Skip to main content

Advertisement

Log in

Bioactivity assessment, micropollutant and nutrient removal ability of Tetradesmus obliquus cultivated outdoors in centrate from urban wastewater

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Nutrient and micropollutant removal, and bioactivity were studied in cultures of the green microalga Tetradesmus obliquus MACC-677 grown in centrate from municipal wastewater (WW). Two outdoor units, a thin-layer cascade (TLC) and a thin-layer raceway pond (TL-RWP), were tested for microalgal culturing in batch and semi-continuous regimes where their photosynthetic performance was monitored. The results revealed that the T. obliquus cultures grew well, showing a high specific growth rate µ of 0.31 day−1 and 0.25 day−1 when grown in WW in TLC and TL-RWP, respectively. The cultivation trials showed high nutrient removal efficiency for ammonium nitrogen (98.5%) as well as orthophosphate (89%), the most abundant forms of N and P occurring in municipal WW. The removal of selected pharmaceuticals and endocrine disruptors (e.g., ibuprofen, amitriptyline, bisphenol A, etc.) was also assessed. Ibuprofen was the most abundant micropollutant detected in the centrate, with concentrations up to 5000 ng L−1 and fast removal during the cultivation. The biomass produced in the centrate revealed antimicrobial activity against plant pathogens, including fungi, oomycota, and bacteria. These findings have shown that the culturing of T. obliquus can be considered a suitable way to contribute to a circular economy, to remove nutrients and micropollutants from municipal WW from which biomass extracts can be further used for plant protection in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Acién FG, Gómez-Serrano C, Morales-Amaral MM, Fernández-Sevilla JM, Molina-Grima E (2016) Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Appl Microbiol Biotechnol 100:9013–9022

    Article  Google Scholar 

  • Acién FG, Molina E, Reis A, Torzillo G, Zittelli GC, Sepulveda C, Msojidek J (2017) Photobioreactors for the production of microalgae. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-Based Biofuels and Bioproducts. From Feedstock Cultivation to End-Products. Woodhead Publishing, Duxford pp 1–44

  • Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 4:1–4

  • Álvarez X, Otero A (2020) Nutrient removal from the centrate of anaerobic digestion of high ammonium industrial wastewater by a semi-continuous culture of Arthrospira sp. and Nostoc sp. PCC 7413. J Appl Phycol 32:2785–2794

    Article  Google Scholar 

  • Andersen RA, Berges JA, Harrison PJ, Watanabe MM (2005) Recipes for Freshwater and Seawater Media (Appendix). In: Andersen A (ed) Algal Culturing Techniques. Elsevier, Amsterdam, p 578

  • Baker NR (2008) Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Baldev E, Ali DM, Pugazhendhi A, Thajuddin N (2021) Wastewater as an economical and ecofriendly green medium for microalgal biofuel production. Fuel 294:120484

    Article  CAS  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Paul NA, de Nys R (2012) Algal biochar: Effects and applications. GCB Bioenergy 4:61–69

    Article  CAS  Google Scholar 

  • Bischoff HW, Bold HC (1963) Some soil algae from Enchanted Rock and related algal species. Phycological Studies, University of Texas IV, pp 1–95

  • Bishop MW, Zubeck MH (2012) Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2:147

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Brown N, Shilton A (2014) Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Rev Environ Sci Biotechnol 13:321–328

    Article  CAS  Google Scholar 

  • Carneiro M, Ranglová K, Lakatos GE, Manoel JAC, Grivalský T, Kozhan DM, Toribio A,  Moreno J, Otero A, Varela J,  Malcata FA, Suárez-Estrella F, Acién JG, Molnár Z, Ördög V, Masojídek J (2021) Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient source. Algal Res 56:102299

  • Costa JAV, de Morais MG (2013) An open pond system for microalgal cultivation. In: Pandey A, Lee D-J, Chisti Y, Soccol CR (eds) Biofuels from Algae. Elsevier, Amsterdam pp 1–22

  • Costa JAV, Freitas BCB, Cruz CG, Silveira J, Morais MG (2019) Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J Environ Sci Health B 54:366–375

    Article  CAS  Google Scholar 

  • Crouch IJ, van Staden J (1993) Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul 13:21–29

    Article  CAS  Google Scholar 

  • Danesh AF, Ebrahimi S, Salehi A, Parsa A (2017) Impact of nutrient starvation on intracellular biochemicals and calorific value of mixed microalgae. Bioch Eng J 15:56–64

    Article  Google Scholar 

  • Das P, Quadir MA, Thaher MI, Alghasal GSHS, Aljanbri HMSJ (2019) Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer. Int J Environ Sci Technol 16:3355–3364

    Article  CAS  Google Scholar 

  • Directive 91/271/EEC C (1991) Council Directive of 21 May 1991 concerning urban wastewater treatment. Off J Eur Communities L135:40–52

  • Dos Santos MDO, Martins MA, Coimbra JSdR, Gates RS, Corredo LdP (2013) Rheological behavior of Chlorella sp. and Scenedesmus sp. cultures in different biomass concentrations. Eng Agric 33:1063–1071

    Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Modell 42:199–215

    Article  Google Scholar 

  • Escapa C, Coimbra RN, Paniagua S, García AI, Otero M (2016) Comparative assessment of diclofenac removal from water by different microalgae strains. Algal Res 18:127–134

    Article  Google Scholar 

  • Figueroa FL, Jerez CG, Korbee N (2013) Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Lat Am J Aquat Res 41:801–819

    Article  Google Scholar 

  • Garcia C, Ceccanti B, Masciandaro G, Hernandez T (1995) Fractionation and characterization of humic substance fractions with different molecular weights, obtained from animal wastes. Soil Sci Plant Nutr 41:649–658

    Article  CAS  Google Scholar 

  • Geyer H, Politzki G, Freitag D (1984) Prediction of ecotoxicological behaviour of chemicals: Relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga Chlorella Chemosphere 13:269–284

    Article  CAS  Google Scholar 

  • Gojkovic Z, Lindberg RH, Tysklind M, Funk C (2019) Northern green algae have the capacity to remove active pharmaceutical ingredients. Ecotoxicol Environ Saf 170:644–656

    Article  CAS  Google Scholar 

  • Grivalský T, Bučková M, Puškárová A, Kraková L, Pangallo D (2016) Water-related environments : a multistep procedure to assess the diversity and enzymatic properties of cultivable bacteria. World J Microbiol Biotechnol 32:42

    Article  Google Scholar 

  • Grivalský T, Ranglová K, da Câmara Manoel JA, Lakatos GE, Lhotský R, Masojídek J (2019) Development of thin-layer cascades for microalgae cultivation: milestones (review). Folia Microbiol (praha) 64:603–614

    Article  Google Scholar 

  • Hena S, Gutierrez L, Croué JP (2021) Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. J Hazard Mater 403:124041

    Article  CAS  Google Scholar 

  • Hess CEC (1961) Mung bean bioassay for the detection of root promoting substances. Plant Physiol 36:21

    Google Scholar 

  • Hofstraat JW, Peeters JCHH, Snel JFHH, Geel C (1994) Simple determination of photosynthetic efficiency and photoinhibition of Dunaliella tertiolecta by saturating pulse fluorescence measurements. Mar Ecol Prog Ser 103:187–196

    Article  Google Scholar 

  • Jensen HL (1957) Biological transformation of thiourea. Arch Mikrobiol 28:145–152

    Article  CAS  Google Scholar 

  • Katarzyna L, Sai G, Avijeet Singh O (2015) Non-enclosure methods for non-suspended microalgae cultivation: Literature review and research needs. Renew Sustain Energy Rev 42:1418–1427

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment - A review - Part I. Chemosphere 75:417–434

    Article  Google Scholar 

  • Lakatos GE, Ranglová K, Manoel JC, Grivalský T, Masojídek J (2021) Photosynthetic monitoring techniques indicate maximum glycogen accumulation in nitrogen-limited Synechocystis sp. PCC 6803 culture. Algal Res 55:102271

  • Landa BB, Hervás A, Bettiol W, Jiménez-Díaz RM (1997) Antagonistic activity of bacteria from the chickpea rhizosphere against Fusrium oxysporum f. sp. ciceris. Phytoparasitica 25:305–318

  • Larsen C, Yu ZH, Flick R, Passeport E (2019) Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Sci Total Environ 695:133772

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59–66

    Article  CAS  Google Scholar 

  • Li X, Li W, Zhai J, Wei H, Wang Q (2019) Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. Bioresour Technol 273:368–376

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  Google Scholar 

  • Malapascua JRF, Jerez CG, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140

    Article  Google Scholar 

  • Manser ND, Wang M, Ergas SJ, Mihelcic JR, Mulder A, van de Vossenberg J, van Lier JB, van der Steen P (2016) Biological nitrogen removal in a photosequencing batch reactor with an algal-nitrifying bacterial consortium and anammox granules. Environ Sci Technol Lett 3:175–179

    Article  CAS  Google Scholar 

  • Marsik P, Rezek J, Židková M, Kramulová B, Tauchen J, Vaněk T (2017) Non-steroidal anti-inflammatory drugs in the watercourses of Elbe basin in Czech Republic. Chemosphere 171:97–105

    Article  CAS  Google Scholar 

  • Martınez ME, Sánchez S, Jimenez JM, El Yousfi F, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  Google Scholar 

  • Masojídek J, Kopecký J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317

    Article  Google Scholar 

  • Masojídek J, Sergejevová M, Malapascua JR, Kopecký J (2015) Thin-layer systems for mass cultivation of microalgae: flat panels and sloping cascades. In: Prokop A, Bajpai RK, Zappi ME (eds) Algal Biorefineries, vol 2. Cham, pp 237–261

  • Mógor ÁF, Ördög V, Lima GPP, Molnar Z, Mógor G (2018) Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J Appl Phycol 30:453–460

    Article  Google Scholar 

  • Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  Google Scholar 

  • Morales-Amaral MdM, Gómez-Serrano C, Acién FG, Fernandez-Sevilla JM, Molina-Grima E (2015) Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Res 9:297–305

    Article  Google Scholar 

  • Morales-Amaral MdM, Gómez-Serrano C, Acién FG, Fernández-Sevilla JM, Molina-Grima E (2015b) Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Res 12:99–108

    Article  Google Scholar 

  • Morales M, Collet P, Lardon L, Helias A, Steyer J-P, Bernard O (2019) Life-cycle assessment of microalgal-based biofuel. In: Pandey A, Chang JS, Soccol CR, Lee DJ, Chist Y (eds) Biofuels from Algae. Elsevier, Amsterdam, pp 507–550

    Chapter  Google Scholar 

  • Morillas-España A, Lafarga T, Acién-Fernández FG, Gómez-Serrano C, González-López CV (2021) Annual production of microalgae in wastewater using pilot-scale thin-layer cascade photobioreactors. J Appl Phycol 33:3861–3871

    Article  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C (2007) Biofertilizers from algal treatment of dairy and swine manure effluents: Characterization of algal biomass as a slow release fertilizer. J Veg Sci 12:107–125

    Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: Use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458

    Article  CAS  Google Scholar 

  • Oliveira CYB, Oliveira CDL, Prasad R, Ong HC, Araujo ES, Shabnam N, Gálvez AO (2021) A multidisciplinary review of Tetradesmus obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Rev Aquac 13:1594–1618

    Article  Google Scholar 

  • Ördög V, Stirk WA, Bálint P, Lovász C, Pulz O, van Staden J (2013) Lipid productivity and fatty acid composition in Chlorella and Scenedesmus strains grown in nitrogen-stressed conditions. J Appl Phycol 25:233–243

    Article  Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437

    Article  Google Scholar 

  • Pereira EG, Martins MA, Mendes MDSA, Mendes LBB, Nesi AN (2017) Outdoor cultivation of Scenedesmus obliquus BR003 in stirred tanks by airlift. Eng Agric 37:1041–1055

    Google Scholar 

  • Plaza BM, Gómez-Serrano C, Acién-Fernández FG, Jimenez-Becker S (2018) Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. J Appl Phycol 30:2359–2365

    Article  CAS  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    Article  CAS  Google Scholar 

  • Ranglová K, Lakatos GE, Câmara Manoel JA, Grivalský T, Suárez Estrella F, Acién Fernández FG, Molnár Z, Ördög V, Masojídek J (2021) Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res 53:102136

  • Ranglová K, Lakatos GE, Manoel JAC, Grivalský T, Masojídek J (2019) Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia Microbiol (Praha) 64:615–625

  • Richmond A (2003) Growth characteristics of ultrahigh-density microalgal cultures. Biotechnol Bioprocess Eng 8:349–353

    Article  CAS  Google Scholar 

  • Romero-Villegas GI, Burboa-Charis VA, Navarro-López E, Cerón-García MC, Acién-Fernandez FG, Estrada-Alvarado MI, Rout NP, Cira-Chávez LA (2021) Biomass production and urban centrate nutrient removal using native microalgae tolerant to high nitrogen concentration and temperature. J Appl Phycol 33:2921–2931

    Article  CAS  Google Scholar 

  • Sánchez JF, Fernández JM, Acién FG, Rueda A, Perez-Parra J, Molina E (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis Process Biochem 43:398–405

    Article  Google Scholar 

  • Schulze PS, Carvalho CF, Pereira H, Gangadhar KN, Schüler LM, Santos TF, Varela JC, Barreira L (2017) Urban wastewater treatment by Tetraselmis sp. CTP4 (Chlorophyta). Bioresour Technol 1:175–183

    Article  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: A signature of photosynthesis. Springer, Dordrecht, pp 321–362

  • Solovchenko A, Khozin-Goldberg I, Selyakh I, Semenova L, Ismagulova T, Lukyanov A, Mamedov I, Vinogradova E, Karpova O, Konyukhov I, Vasilieva S, Mojzes P, Dijkema C, Vecherskaya M, Zvyagin I, Nedbal L, Gorelova O (2019a) Phosphorus starvation and luxury uptake in green microalgae revisited. Algal Res 43:101651

    Article  Google Scholar 

  • Solovchenko AE, Ismagulova TT, Lukyanov AA, Vasilieva SG, Konyukhov IV, Pogosyan SI, Lobakova ES, Gorelova OA (2019b) Luxury phosphorus uptake in microalgae. J Appl Phycol 31:2755–2770

    Article  CAS  Google Scholar 

  • Sousa H, Sousa CA, Simões LC, Simões M (2022) Microalgal-based removal of contaminants of emerging concern. J Hazard Mater 423:127153

    Article  CAS  Google Scholar 

  • Suárez-Estrella F, Ros M, Vargas-García MC, Lopez MJ, Moreano J (2014) Control of Xanthomonas campestris pv. vesicatoria using agroindustrial waste-based compost. J Plant Pathol 96:243–248

    Google Scholar 

  • Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58:19–34

    Article  CAS  Google Scholar 

  • Tate JJ, Gutierrez-Wing MT, Rusch KA, Benton MG (2013) The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: A Review. J Plant Growth Regul 32:417–428

    Article  CAS  Google Scholar 

  • Tolboom SN, Carrillo-Nieves D, de Jesús R-A, de la Cruz QR, Barceló D, Iqbal HM, Parra-Saldivar R (2019) Algal-based removal strategies for hazardous contaminants from the environment–a review. Sci Total Environ 665:358–366

    Article  CAS  Google Scholar 

  • Toribio AJ, Jurado MM, Suárez-Estrella F, López-González JA, Martínez-Gallardo MR, López MJ (2021) Application of sonicated extracts of cyanobacteria and microalgae for the mitigation of bacterial canker in tomato seedlings. J Appl Phycol 33:3817–3829

    Article  CAS  Google Scholar 

  • Toribio AJ, Suárez-Estrella F, Jurado MM, López MJ, López-González JA, Moreno J (2020) Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents. Biotechnol Rep 26:e00449

    Article  CAS  Google Scholar 

  • Torzillo G, Bernardini P, Masojídek J (1998) On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria). J Phycol 34:504–510

    Article  CAS  Google Scholar 

  • Wang J, Zhou W, Chen H, Zhan J, He C, Wang Q (2019) Ammonium nitrogen tolerant Chlorella strain screening and its damaging effects on photosynthesis. Front Microbiol 9:3250

    Article  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wen X, Du K, Wang Z, Peng X, Luo L, Tao H, Xu Y, Zhang D, Geng Y, Li Y (2016) Effective cultivation of microalgae for biofuel production: A pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol Biofuels 9:123

  • White S, Anandraj A, Bux F (2011) PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol 102:1675–1682.

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  Google Scholar 

  • Zambrano J, García-Encina PA, Hernández F, Botero-Coy AM, Jiménez JJ, Irusta-Mata R (2021) Removal of a mixture of veterinary medicinal products by adsorption onto a Scenedesmus almeriensis microalgae-bacteria consortium. J Water Process Eng 43:102226

    Article  Google Scholar 

  • Zhou GJ, Ying GG, Liu S, Zhou LJ, Chen ZF, Peng FQ (2014) Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ Sci Process Impacts 16:2018–2027

    Article  CAS  Google Scholar 

  • Zijffers J-WF, Salim S, Janssen M, Tramper J, Wijffels RH (2008) Capturing sunlight into a photobioreactor: Ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145:316–327

    Article  CAS  Google Scholar 

  • Zucconi F., Pera A., Forte M, de Bertoldi M (1981) Evaluating toxicity in immature compost. Biocycle 22:54–57

Download references

Acknowledgements

The authors thank Ms. Soňa Pekařová, Mr. Michal Bureš, Mr. Petr Novotný and Mr. Daniyar Malikuly Kozhan for technical assistance during cultivation and Mr. Miroslav Kajan for consultation on wastewater use.

Funding

This work was supported by the EU program Horizon 2020 [project SABANA, grant No.727874] and partly supported by the Program INTERREG V-A Austria – Czech Republic 2014 – 2020 [project Plastocyan ATCZ260], and the ESF project International mobility of researchers—MSCA-IF III (Institute of Microbiology of the CAS, v.v.i.), [reg. nr. CZ.02.2.69/0.0/0.0/19_074/0014484].

Author information

Authors and Affiliations

Authors

Contributions

Tomáš Grivalský, Jiří Masojídek, Vince Ördög conceived research. Tomáš Grivalský, Karolína Ranglová, Gergely Ernö Lakatos, João Artur Câmara Manoel, Tereza Černá, Marta Barceló-Villalobos, Francisca Suárez Estrella, analysed data. Tomáš Grivalský prepared the text of the manuscript. Tomáš Grivalský, Karolína Ranglová, Gergely Ernö Lakatos and Tereza Černá prepared the figures of the manuscript. Jiří Masojídek, Vince Ördög revised and edited the manuscript. Tomáš Grivalský finalized the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Tomáš Grivalský.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(PDF 410 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grivalský, T., Ranglová, K., Lakatos, G.E. et al. Bioactivity assessment, micropollutant and nutrient removal ability of Tetradesmus obliquus cultivated outdoors in centrate from urban wastewater. J Appl Phycol 34, 2955–2970 (2022). https://doi.org/10.1007/s10811-022-02828-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02828-6

Keywords

Navigation