Skip to main content

Advertisement

Log in

Impaired Immunomodulatory Properties of the Retina from the Inflammatory Environment of the Damaged Eye

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The retina represents a highly specialized structure with the primary function to capture a light signal and to convert it into electrical impulses. Any damage or disease of the retina can cause visual impairment. Since retinal degenerative diseases are generally associated with immune cell infiltration, a local inflammatory reaction, and cytokine burn, there is a need for mechanisms to prevent the retina from damage by a deleterious immune reaction. In this study, we show that mouse retinal explants co-cultivated with stimulated spleen cells, inhibit in a dose-dependent manner the activation of T cells, and suppress the production of cytokines interleukin-2, interleukin-10, and interferon-\(\gamma\). The immunoregulatory properties of the retina were mainly mediated by a paracrine effect since retinal explants, separated by a semipermeable membrane, or supernatants obtained after the cultivation of retinal explants, inhibited the reactivity of immune cells. A model of retinal damage was established by the application of sodium iodate which selectively destroys photoreceptors, as it was demonstrated by a decrease in the number of rhodopsin-positive cells. This process was accompanied by increased infiltration of the retina with cells of the immune system and by a local inflammatory reaction. The pharmacologically damaged retina had significantly decreased the ability to inhibit T cell activation and production of cytokines by immune cells. Overall, the results showed that the retina possesses immunoregulatory properties and inhibits the activation and functions of T cells. However, the immunomodulatory properties of the retina are decreased if the retina is damaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

DATA AVAILABILITY

The data used or analyzed during the current study are available from the corresponding author on request.

References

  1. Masli, S., and J.L. Vega. 2011. Ocular immune privilege sites. Methods in Molecular Biology 677: 449–458.

    Article  CAS  PubMed  Google Scholar 

  2. Benhar, I., A. London, and M. Schwartz. 2012. The privileged immunity of immune privileged organs: The case of the eye. Frontiers in Immunology 3: 296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fukuoka, Y., M. Strainic, and M.E. Medof. 2003. Differential cytokine expression of human retinal pigment epithelial cells in response to stimulation by C5a. Clinical and Experimental Immunology 131: 248–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Keino, H., S. Horie, and S. Sugita. 2018. Immune privilege and eye-derived T-regulatory cells. Journal of Immunology Research 2018: 1679197.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xi, H., K. J. Jr. Katschke, Y. Li, T. Truong, W.P. Lee, L. Diehl, L. Rangell, J. Tao, R. Arceo, J. Eastham-Anderson, JA. Hackney, A. Iglesias, J. Cote-Sierra, J. Elstrott, R.M. Weimer, and M. van Lookeren Campagne. 2016. IL-33 amplifies an innate immune response in the degenerating retina. Journal of experimental Medicine 213: 189-207.

  6. Lee, Y.S., A. Ahjoku Amadi-Obi, C.-R. Yu, and C.E. Egwuagu. 2011. Retinal cells suppress intraocular inflammation (uveitis) through production of interleukin-27 and interleukin-10. Immunology 132: 492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu, C.-R., M.K. Yadav, M. Kang, Y. Jittayasothorn, L. Dong, and C.E. Egwuagu. 2022. Photoreceptor cells constitutively express IL-35 and promote ocular immune privilege. International Journal of Molecular Sciences 23 (15): 8156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holan, V., B. Hermankova, M. Krulova, and A. Zajicova. 2019. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy. World Journal of Stem Cells 11: 957–967.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mohan, K.V., A. Mishra, A. Muniyasamy, P. Sinha, P. Sahu, A. Kesarwani, K. Jain, P. Nagarajan, V. Scaria, M. Agarwal, S. Naseem, S. Akhter, C. Gupta, and P. Upadhyay. 2022. Immunological consequences of compromised ocular immune privilege accelerate retinal degeneration in retinitis pigmentosa. Orphanet Journal of Rare Diseases 17: 378.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nikoopour, E., C.-M. Lin, S. Sheskey, J.R. Heckenlively, and S.K. Lundy. 2019. Immune cell infiltration into the eye is controlled by IL-10 in recoverin-induced autoimmune retinopathy. Journal of Immunology 202: 1057–1068.

    Article  CAS  Google Scholar 

  11. Vu, T.H.K., H. Chen, L. Pan, K.-S. Cho, D. Doesburg, E.F. Thee, N. Wu, E. Arlotti, M.J. Jager, and D.F. Chen. 2020. CD4+ T-Cell responses mediate progressive neurodegeneration in experimental ischemic retinopathy. American Journal of Pathology 190: 1723–1734.

    Article  Google Scholar 

  12. Galvez, B.G., C. Martinez-Perez, C. Villa-Collar, C. Alvarez-Peregrina, and M.A. Sánchez-Tena. 2022. Influence of cytokines on inflammatory eye diseases: A citation network study. Journal f Clinical Medicine 11: 661.

    Article  CAS  Google Scholar 

  13. Tsai, T., S. Kuehn, N. Tsiampalis, M.-K. Vu, V. Kakkassery, G. Stute, H.B. Dick, and S.C. Joachim. 2018. Anti-inflammatory cytokine and angiogenic factors levels in vitreous samples of diabetic retinopathy patients. PLoS ONE 13 (3): e0194603.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu, F., A. Phone, R. Lamy, D. Ma, S. Laotaweerungsawat, and S., Y. Chen, T. Zhao, W. Ma, F. Zhang, C. Psaras, and J.M. Stewart. 2020. Correlation of aqueous, vitreous, and plasma cytokine levels in patients with proliferative diabetic retinopathy. Investigative Ophthalmology and Visual Sciences 61: 26.

    Article  CAS  Google Scholar 

  15. Zamiri, P., S. Sugita, and J.W. Streilein. 2007. Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. Chemical Immunology and Allergy 92: 86–93.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi, S., K. Adachi, Y. Suzuki, A. Maeno, and M. Nakazawa. 2016. Profiles of inflammatory cytokines in the vitreous fluid from patients with rhegmatogenous retinal detachment and their correlations with clinical features. BioMed Research International 2016: 4256183.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hermankova, B., J. Kossl, P. Bohacova, E. Javorkova, M. Hajkova, M. Krulova, A. Zajicova, and V. Holan. 2019. The immunomodulatory potential of mesenchymal stem cells in a retinal inflammatory environment. Stem Cell Reviews and Reports 15: 880–891.

    Article  CAS  PubMed  Google Scholar 

  18. Chowers, G., M. Cohen, D. Marks-Ohana, S. Stika, A. Eijzenberg, E. Banin, and A. Obolensky. 2017. Course of sodium iodate-induced retinal degeneration in albino and pigmented mice. Investigative Ophthalmology and Visual Sciences 58: 2239–2249.

    Article  CAS  Google Scholar 

  19. Zhang, X.-Y., T.K. Ng, M.E. Brelén, D. Wu, J.X. Wang, K.P. Chan, J.S.Y. Yung, D. Cao, Y. Wang, S. Zhang, S.O. Chan, and C.P. Pang. 2016. Continuous exposure to non-lethal doses of sodium iodate induces retinal pigment epithelial cell dysfunction. Scientific Reports 6: 37279.

    CAS  PubMed  Google Scholar 

  20. Wenkel, H., and J.W. Streilein. 1998. Analysis of immune deviation elicited by antigens injected into the subretinal space. Investigative Ophthalmology and Visual Sciences 39: 1823–1834.

    CAS  Google Scholar 

  21. Müller, B. 2019. Organotypic culture of adult mouse retina. Methods in Molecular Biology 1940: 181–191.

    Article  PubMed  Google Scholar 

  22. Valdes, J., L. Trachsel-Moncho, A. Sahaboglu, D. Trifunović, M. Miranda, M. Ueffing, F. Paquet-Durand, and O. Schmachtenberg. 2016. Organotypic retinal explant cultures as in vitro alternative for diabetic retinopathy studies. ALTEX (Alternatives to Animal Experimentation) 33: 459–464.

    PubMed  Google Scholar 

  23. Taylor, A.W. 2009. Ocular immune privilege. Eye (London, England) 23: 1885–1889.

    Article  CAS  PubMed  Google Scholar 

  24. Holan, V., Z. Haskova, and M. Filipec. 1996. Transplantation immunity and tolerance in the eye. Rejection and acceptance of orthotopic corneal allografts in mice. Transplantation 62: 1050–1054.

    Article  CAS  PubMed  Google Scholar 

  25. Niederkorn, J.Y., and D.F.P. Larkin. 2010. Immune privilege of corneal allografts. Ocular Immunology and. Inflammation 18: 162–171.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Forrester, J.V., and L. Kuffova. 2004. Corneal transplantation. Imperial College Press.

    Book  Google Scholar 

  27. Montesel, A., J.L. Alió Del Barrio, P. Yébana Rubio, and J.L. Alió. 2021. Corneal graft surgery: A monocentric long-term analysis. European Journal of Ophthalmology 31: 1700–1708.

    Article  PubMed  Google Scholar 

  28. Nagineni, C.N., V.K. Kommineni, N. Ganjbaksh, K.K. Nagineni, J.J. Hooks, and B. Detrick. 2015. Inflammatory cytokines induce expression of chemokines by human retinal cells: Role in chemokine receptor mediated age-related macular degeneration. Aging and Disease 6: 444–455.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sivakumar, V., W.S. Foulds, C.D. Luu, E.A. Ling, and C. Kaur. 2011. Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina. Journal of Pathology 224: 245–260.

    Article  CAS  PubMed  Google Scholar 

  30. Thangaraj, G., A. Greif, and P.G. Layer. 2011. Simple explant culture of the embryonic chicken retina with long-term preservation of photoreceptors. Experimental Eye Research 93: 556–564.

    Article  CAS  PubMed  Google Scholar 

  31. Stutzki, H., C. Leibig, A. Andreadaki, D. Fischer, and G. Zeck. 2014. Inflammatory stimulation preserves physiological properties of retinal ganglion cells after optic nerve injury. Frontiers in Cellular Neuroscience 8: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang, M., B. Marshall, and S.S. Atherton. 2018. Murine cytomegalovirus infection and apoptosis in organotypic retinal cultures. Investigative Ophthalmology and Visual Sciences 49: 295–303.

    Article  CAS  Google Scholar 

  33. Cen, L.-P., T.K. Ng, J.-J.I. Liang, X. Zhuang, X. Yao, G.H.-F. Yam, H. Chen, H.S. Cheung, M. Zhang, and C.P. Pang. 2018. Human periodontal ligament-derived stem cells promote retinal ganglion cell survival and axon regeneration after optic nerve injury. Stem Cells 36: 844–855.

    Article  CAS  PubMed  Google Scholar 

  34. Reboussin, E., J. Buffault, F. Brignole-Baudouin, A. Réaux-Le Goazigo, L. Riancho, C. Olmiere, J.-A. Sahel, S.M. Parsadaniantz, and C. Baudouin. 2022. Evaluation of neuroprotective and immunomodulatory properties of mesenchymal stem cells in an ex vivo retinal explant model. Journal of Neuroinflammation 19: 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paquet-Durand, F., D. Sanges, J. McCall, J. Silva, T. van Veen, V. Marigo, and P. Ekström. 2010. Photoreceptor rescue and toxicity induced by different calpain inhibitors. Journal of Neurochemistry 115: 930–940.

    Article  CAS  PubMed  Google Scholar 

  36. Alarautalahti, V., S. Ragauskas, J.J. Hakkarainen, H. Uusitalo-Järvinen, H. Uusitalo, J. Hyttinen, G. Kalesnykas, and S. Nymark. 2019. Viability of mouse retinal explant cultures assessed by preservation of functionality and morphology. Investigative Ophthalmology and Visual Sciences 60: 1914–1927.

    Article  CAS  Google Scholar 

  37. Shipkova, M., and E. Wieland. 2012. Surface markers of lymphocyte activation and markers of cell proliferation. Clinica Chimica Acta 413: 1338–1349.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a project No. 309621 from the Grant Agency of the Charles University, Prague.

Author information

Authors and Affiliations

Authors

Contributions

Vladimir Holan and Katerina Palacka planned the experiments and wrote the manuscript. Katerina Palacka, Barbora Hermankova, Eliska Javorkova, and Alena Zajicova performed the experiments and analyzed data. All the authors read and approved the final version of manuscript.

Corresponding author

Correspondence to Vladimir Holan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacka, K., Hermankova, B., Javorkova, E. et al. Impaired Immunomodulatory Properties of the Retina from the Inflammatory Environment of the Damaged Eye. Inflammation 46, 2320–2331 (2023). https://doi.org/10.1007/s10753-023-01880-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01880-9

KEY WORDS

Navigation