Skip to main content

Advertisement

Log in

Geodynamic phenomena in hazardous fault zones affected by extensive surface mining in Central Europe

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This article presents a comprehensive interpretation of long-term and very precise levelling and tiltmeter monitoring in an exploration gallery opened 42 years ago in the Krušné hory Mts. The importance of the detailed investigation of the crystalline rock mass is a result of the nearby brown coal open pit mine, which prolongated the natural 500-m long fault slope by an additional 200 m of the working face. Slope movements may be generated under such conditions. Moreover, Jezeří Castle (gothic monument) could be affected by slope instability. The exploration gallery together with the surrounding slope serve as a natural laboratory for registering a) rock mass block tilting; b) possible elastic uplift resulting from an enormous mass unloading of basin sediments during coal mining; and c) tectonic movements along the Krušné hory fault (part of the ECRIS). The entry section of the gallery showed long-term gravitational creep of the surface formations, which has been accelerated due to the mining activity. On the other side, the back part of the gallery showed a long-term uplift, and the very end of the gallery is without any signs of exogenous or anthropogenic influence. Strict seasonal variability in the trend of rock mass tilting with typical winter/spring vertical acceleration corresponds to the landslide activity in the gallery surroundings. The overall evaluation of the monitoring has not indicated a significant risk for the Jezeří Castle. It is a successful result of geotechnical works from the 1980s and long-term monitoring, which was incorporated into mining projects and proper hazard management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balatka B, Kalvoda J (2006) Geomorfologické členění Geomorfologické členění reliéfu Čech. Praha, Kartografie Praha

  • Burda J, Vilímek V (2021) An Interdisciplinary Assessment of a Coal-Mining-Induced Catastrophic Landslide (Czech Republic). In: Vilímek V, Wang F, Strom A, Sassa K, Bobrowsky PT, Takara K (eds) Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer, Cham, pp 133–145

  • Burda J, Hartvich F, Valenta J, Smítka V, Rybář J (2013) Climate-induced landslide reactivation at the edge of the Most Basin (Czech Republic) – progress towards better landslide prediction. Nat Hazards Earth Syst Sci 13:361–374

    Article  Google Scholar 

  • Burda J, Žižka L, Dohnal J (2011) A monitoring of recent mass movement activity in anthropogenic slopes of the Krušné Hory Mountains (Czech Republic). Nat Hazards Earth Syst Sci 9:119–128

    Google Scholar 

  • Burda J (2011) Spatio-temporal activity of mass movements in the Krušné Hory Mountains (Czech Republic): dendrogeomorphological case study. AUC Geographica 46:15–30

    Article  Google Scholar 

  • Chán B, Mrlina J, Polák V (2003) Expansion and modernization of the tilt-measuring system monitoring hazardous slopes of the ČSA big-scale opencast mine in Most. Zpravodaj Hnědé Uhlí 2:28–39

    Google Scholar 

  • Dezes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33

    Article  Google Scholar 

  • Domácí L (1977) Litostratigrafie třetihorních sedimentů v hnědouhelné severočeské pánvi. Acta Univ Carol Geol 1:75–80

    Google Scholar 

  • Francioni M, Salvini R, Stead D, Giovannini R, Riccucci S, Vanneschi C, Gullì D (2015) An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: slope stability assessment through kinematic and numerical methods. Comput Geotech 67:46–63

    Article  Google Scholar 

  • Grygar TM, Mach K (2013) Regional chemostratigraphic key horizons in the macrofossilbarren siliciclastic lower Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic). Bull Geosci 88:557–571

    Article  Google Scholar 

  • Horáček M (1994) Srovnání poznatků o průzkumných důlních dílech mezi Jezerkou a Horním Jiřetínem v Krušných horách. Sbor Geol Věd 20:45–51

    Google Scholar 

  • Hurník S (1982) Endogenní geologické procesy a rozvoj velkolomů v severočeské hnědouhelné pánvi. Geol Průzk 5:129–131

    Google Scholar 

  • Jiříkovský T, Seidl M (2018) Výškové zaměření bodů nivelačních pořadů v oblasti Krušných hor. Technical report, Praha, ČVUT

  • Kachlík V (2003) Geologický vývoj území České republiky. Praha, SÚRAO

  • Kaczorowski M, Kasza D, Zdunek R, Rudnicki M, Wronowski R (2019) Time Dependencies Between Tectonic Activity of Swiebodzice Depression (SW Poland) and Seismic Activity in Poland and Czech Mining Regions. 4th International Innovative Mining Symposium, E3S Web of Conferences, Proceeding Paper, 105, 02001

  • Kalvoda J, Vilímek V, Zeman A (1994) Earth´s Surface Movements in the Hazardeous Area of Jezeří Castle, Krušné hory Mountains. GeoJournal 32:247–252

    Article  Google Scholar 

  • Kalvoda J, Stemberk J, Vilímek V, Zeman A (1990) Analysis of levelling measurements of the Earth`s surface movements on the geodynamic polygon Mikulovice - Jezeří in the Krušné hory Mts. Proc. 6th Int. IAEG Cong 1631–1637

  • Kopecký A (1989) Neotektonika severočeské hnědouhelné pánve a Krušných hor. Sbor Geol Věd Geol 44:155–170

    Google Scholar 

  • Košťák B, Mrlina J, Stemberk J, Chán B (2011) Tectonic movements monitored in the Bohemian Massif. J Geodyn 52:34–44

    Article  Google Scholar 

  • Král V (1968) Geomorfologie vrcholové části krušných hor a problém paroviny. Rozpravy Československé Akademie Věd 78:42–49

    Google Scholar 

  • Krejčí O, Krejčí V, Kycl P, Šikula J (2014) Svahové nestability a jejich dopady na krajinu a společnost. Vesmír 93:510–519

    Google Scholar 

  • Lesparre N, Boudin F, Champollion C, Chery J, Danquigny C, Seat HC, Cattoen M (2017) Lizion F and Longuevergne L (2017) New insights on fractures deformation from tiltmeter data measured inside the Fontaine de Vaucluse karst system. Geophys J Int 208:1389–1402. https://doi.org/10.1093/gji/ggw446

    Article  Google Scholar 

  • Longuevergne L, Florsch N, Boudin F, Oudin L, Camerlynck C (2009) Tilt and strain deformation induced by hydrologically active natural fractures: Application to the tiltmeters installed in Sainte-Croix-aux-Mines observatory (France). Geophys J Int 178(2):667–677

    Article  Google Scholar 

  • Malkovský M (1977) Důležité zlomy platformního pokryvu severní části Českého masívu. Ústř Úst Geol 14:7–12

    Google Scholar 

  • Marek J (1983) Engineering-geological survey of the stability of the Jezeří Castle in front of a coal mine (in Czech). Geolog Průzk 25:234–236

    Google Scholar 

  • Marek J (1977) Inženýrskogeologické problémy vyvolané rozšířením uhelných velkolomů k úpatí Krušných hor. Geol Průzk 19:164–166

    Google Scholar 

  • Mejzlík L, Mencl V (1989) Stabilita pilíře Jezeří. Stabilita svahů na povrchových hnědouhelných dolech. Most, VÚHU

  • Mrlina J (2021) Monitoring hazardous open pit mine slope. Proc. 74th EAGE Conference & Exhibition (C038):1–5

  • Mrlina J, Polák V, Skalský P, Chán B (2016) Hazardous slope control in an-open pit mine based on continuous tilt observations. Proc. 5th Geological & Earth Sciences (GEOS 2016) Global Science & Technology Forum (GSTF), 48–52

  • Mrlina J, Chán B, Polák V, Skalský L (2010) Geophysical and geodetic control of hazard in mines. In: Williams et al. (eds) Geologically active. Taylor & Francis Group, CRC Press, London, pp 3379–3385

  • Mrlina J, Skalský L, Tobyáš V (1997) Slope stability monitoring in the forefield of the open pit mine ČSA, Northwest Bohemia. In: Rakowski Z (ed) Geomechanics 96. Balkema, Rotterdam, pp 51–56

    Google Scholar 

  • Mϋhldorf J (1981) Final report Komořany II. C – Jezeří. Praha, Stavební geologie n. p

  • Peterek A, Schroder B (1997) Neogene fault activity and morphogenesis in the basement area north of the KTB drill site (Fichtelgebirge and Steinwald). Geol Rundschau 86:185–190

    Article  Google Scholar 

  • Pichler E (1998) Svahové sesuvy na lomech. In: Valášek V (ed) 45 let Výzkumného ústavu pro hnědé uhlí v Mostě. Most, VÚHU, pp 54–64

    Google Scholar 

  • Renaud V, Al Heib M, Muller R, Burda J (2021) Long-term slope stability of abandoned mine lake – numerical modelling and risk assessment. Mater Mater Proc 5(88). https://doi.org/10.3390/materproc2021005088

  • Rybář J, Novotný J (2005) Influence of climogenic factors on the stability of natural and anthropogenic slopes. Zpravodaj Hnědé Uhlí 3:13–28

    Google Scholar 

  • Rybář J (1997) Interpretation of data about tectonic activity at the toe of Krušné Hory Mts. Affecting endogenous and exogenous processes in the rock enviroment. Acta Montana, Series AB 106:9–24

    Google Scholar 

  • Rybář J (1981) Inženýrsko-geologické hodnocení stabilitách poměrů předpolí povrchových velkolomů při úpatí Krušných hor. Stabilitní řešení svahů a jejich zabezpeční. Sborník přednášek semináře. Most 76–93

  • Schuster RL, Wieczorek GF (2002) Landslide triggers and types. In: Rybář J, Stemberk J, Wagner P (eds) Landslides. A.A.Balkema Publishers, Lise, Abingdon, Exton(pa), London, pp 59–79

    Google Scholar 

  • Spotila AJ (2004) Orogenesis. In: Goudie AS (ed) Encyclopedia of Geomorphology. London and New York, Routledge Ltd, pp 731–734

    Google Scholar 

  • Spottiswoode SM, Milev AM (2006) A study of mine stability using records of ground tilting. ARMA/USRMS 06–1168:1–12

    Google Scholar 

  • Škvor V (1975) Geology of the Czech part of the Krušné hory Mts. and the Smrčiny Mts. Praha, Academia, Praha

  • Špůrek M (1974) Sesuvné jevy u Dřinova na Mostecku. Věst Ustř Úst Geol 49:231–234

    Google Scholar 

  • Stead D, Eberhardt E, Coggan JS (2006) Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng Geol 83:217–235

  • Tumajer J, Burda J, Treml V (2015) Dating of rockfall events using vessel lumen area in Betula pendula. IAWA J 36:286–299

    Article  Google Scholar 

  • Tumajer J, Burda J (2013) Landslide-induced changes of vessel shape in Betula pendula Roth. – A preliminary study. AUC Geographica 48:59–68

    Article  Google Scholar 

  • Timofeev VY, Masalsky OK, Ardyukov DG, Timofeev AV (2015) Local Deformation and Rheological Parameters by Measurements in Talaya Station Gallery (Baikal Region). Geodyn Tectonophys 6(20):241–253

    Article  Google Scholar 

  • Timofeev VY, Ardyukov DG, Timofeev AV, Boyko EV, Valitov MG, Kalish EN, Stus YF, Nosov DA, Sizikov LS (2021) Some Features of Current technogenic Movements of the Earth´S Crust. Geodyn Tectonophys 12(3):776–791

    Article  Google Scholar 

  • Vanneschi C, Eyre M, Burda J, Žižka L, Francioni M, Coggan JS (2018) Investigation of landslide failure mechanisms adjacent to lignite mining operations in North Bohemia (Czech Republic) through a limit equilibrium/finite element modelling approach. Geomorphology 320:142–153

    Article  Google Scholar 

  • Volkov V, Mrlina J, Dubrov M, Smirnov V, Polak V (2020) Atmosphere, ocean and lithosphere as a possible drive of earthquake triggering. Geodesy Geodyn 11:442–454. https://doi.org/10.1016/j.geog.2020.07.001

    Article  Google Scholar 

  • Zeman J (1983) Character of the neotectonic morphostructure of the Krušné hory Mts. and the model of its origin. Věst. ústř. úst. geol. 1988:63(6)

  • Zheng D, Xiao R, Li WL, Liu FZ (2016) Landside induced by colluvial loading of rockfall due to underground mining. 12th International Symposium on Landslides, June 12–19, Napoli, Italy. Proceedings Paper Landslides and Engineered Slopes: Experience, Theory and Practise 1–3:2129–2137

Download references

Acknowledgements

We appreciate the cooperation of V. Polák and P. Skalský from the Institute of Geophysics, Prague, who managed the tilt data recording in the gallery and the data processing, respectively. Tilt observations were supported by the SEV-EN Energy mining company. Research and data interpretation were supported by the Ministry of Education, Youth and Sports within the framework of the Grant CzechGeo/EPOS No. LM2015079; Research Fund for Coal and Steel project No. 847299 RAFF – Risk Assessment of Final Pits during Flooding; International Programme on Landslides – IPL project – 246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Burda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burda, J., Mrlina, J. & Vilímek, V. Geodynamic phenomena in hazardous fault zones affected by extensive surface mining in Central Europe. Bull Eng Geol Environ 81, 153 (2022). https://doi.org/10.1007/s10064-022-02650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-022-02650-x

Keywords

Navigation