Skip to main content
Log in

Increased macrophage M2/M1 ratio is associated with intracranial aneurysm rupture

  • Original Article - Vascular Neurosurgery - Aneurysm
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Purpose

Intracranial aneurysm (IA) rupture results in one of the most severe forms of stroke, with severe neurological sequelae. Inflammation appears to drive aneurysm formation and progression with macrophages playing a key role in this process. However, less is known about their involvement in aneurysm rupture. This study is aimed at demonstrating how relationship between the M1 (pro-inflammatory) and M2 (reparative) macrophage subtypes affect an aneurysm’s structure resulting in its rupture.

Methods

Forty-one saccular aneurysm wall samples were collected during surgery including 13 ruptured and 28 unruptured aneurysm sacs. Structural changes were evaluated using histological staining. Macrophages in the aneurysm wall were quantified and defined as M1 and M2 using HLA-DR and CD163 antibodies. Aneurysm samples were divided into four groups according to the structural changes and the M2/1 ratio. Data were analyzed using the Mann–Whitney U test.

Results

This study has demonstrated an association between the severity of structural changes of an aneurysm with inflammatory cell infiltration within its wall and subsequent aneurysm rupture. More severe morphological changes and a significantly higher number of inflammatory cells were observed in ruptured IAs (p < 0.001). There was a prevalence of M2 macrophage subtypes within the wall of ruptured aneurysms (p < 0.001). A subgroup of unruptured IAs with morphological and inflammatory changes similar to ruptured IAs was observed. The common feature of this subgroup was the presence of an intraluminal thrombus.

Conclusions

The degree of inflammatory cell infiltration associated with a shift in macrophage phenotype towards M2 macrophages could play an important role in structural changes of the aneurysm wall leading to its rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aoki T, Frȍsen J, Fukuda M, Bando K, Shioi G, Tsuji K, Ollikainen E, Nozaki K, Laakkonen J, Narumiya S (2017) Prostaglandin E2–EP2–NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci Signal 10:eaah6037. https://doi.org/10.1126/scisignal.aah6037

    Article  CAS  Google Scholar 

  2. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K, Hashimoto N (2009) Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke 40:942–951. https://doi.org/10.1161/STROKEAHA.108.532556

    Article  CAS  Google Scholar 

  3. Aoki T, Kataoka H, Morimoto M, Nozaki K, Hashimoto N (2007) Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats. Stroke 38:162–169. https://doi.org/10.1161/01.STR.0000252129.18605.c8

    Article  CAS  Google Scholar 

  4. Can A, Rudy RF, Castro VM, Yu S, Dligach D, Finan S, Gainer V, Shadick NA, Savova G, Murphy S, Cai T, Weiss ST, Du R (2018) Association between aspirin dose and subarachnoid hemorrhage from saccular aneurysms: a case-control study. Neurology 91:e1175–e1181. https://doi.org/10.1212/WNL.0000000000006200

    Article  CAS  Google Scholar 

  5. Cebral J, Ollikainen E, Chung BJ, Mut F, Sippola V, Jahromi BR, Tulamo R, Hernesniemi J, Niemela M, Robertson A, Frosen J (2017) Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. AJNR Am J Neuroradiol 38:119–126. https://doi.org/10.3174/ajnr.A4951

    Article  CAS  Google Scholar 

  6. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS (2012) Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab 32:1659–1676. https://doi.org/10.1038/jcbfm.2012.84

    Article  CAS  Google Scholar 

  7. Etminan N, Brown RD Jr, Beseoglu K, Juvela S, Raymond J, Morita A, Torner JC, Derdeyn CP, Raabe A, Mocco J, Korja M, Abdulazim A, Amin-Hanjani S, Al-Shahi Salman R, Barrow DL, Bederson J, Bonafe A, Dumont AS, Fiorella DJ, Gruber A, Hankey GJ, Hasan DM, Hoh BL, Jabbour P, Kasuya H, Kelly ME, Kirkpatrick PJ, Knuckey N, Koivisto T, Krings T, Lawton MT, Marotta TR, Mayer SA, Mee E, Pereira VM, Molyneux A, Morgan MK, Mori K, Murayama Y, Nagahiro S, Nakayama N, Niemela M, Ogilvy CS, Pierot L, Rabinstein AA, Roos YB, Rinne J, Rosenwasser RH, Ronkainen A, Schaller K, Seifert V, Solomon RA, Spears J, Steiger HJ, Vergouwen MD, Wanke I, Wermer MJ, Wong GK, Wong JH, Zipfel GJ, Connolly ES Jr, Steinmetz H, Lanzino G, Pasqualin A, Rufenacht D, Vajkoczy P, McDougall C, Hanggi D, LeRoux P, Rinkel GJ, Macdonald RL (2015) The unruptured intracranial aneurysm treatment score: a multidisciplinary consensus. Neurology 85:881–889. https://doi.org/10.1212/WNL.0000000000001891

    Article  Google Scholar 

  8. Frosen J, Cebral J, Robertson AM, Aoki T (2019) Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurg Focus 47:E21. https://doi.org/10.3171/2019.5.FOCUS19234

    Article  Google Scholar 

  9. Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, Jääskeläinen J (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–2293. https://doi.org/10.1161/01.STR.0000140636.30204.da

    Article  Google Scholar 

  10. Greving JP, Wermer MJ, Brown RD Jr, Morita A, Juvela S, Yonekura M, Ishibashi T, Torner JC, Nakayama T, Rinkel GJ, Algra A (2014) Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 13:59–66. https://doi.org/10.1016/S1474-4422(13)70263-1

    Article  Google Scholar 

  11. Hasan D, Chalouhi N, Jabbour P, Hashimoto T (2012) Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results. J Neuroinflammation 9:222. https://doi.org/10.1186/1742-2094-9-222

    Article  CAS  Google Scholar 

  12. Hasan D, Hashimoto T, Kung D, Macdonald RL, Winn HR, Heistad D (2012) Upregulation of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) in wall of ruptured human cerebral aneurysms: preliminary results. Stroke 43:1964–1967. https://doi.org/10.1161/STROKEAHA.112.655829

    Article  CAS  Google Scholar 

  13. Hasan DM, Chalouhi N, Jabbour P, Dumont AS, Kung DK, Magnotta VA, Young WL, Hashimoto T, Richard Winn H, Heistad D (2013) Evidence that acetylsalicylic acid attenuates inflammation in the walls of human cerebral aneurysms: preliminary results. J Am Heart Assoc 2:e000019. https://doi.org/10.1161/JAHA.112.000019

    Article  CAS  Google Scholar 

  14. Hosaka K, Hoh BL (2014) Inflammation and cerebral aneurysms. Transl Stroke Res 5:190–198. https://doi.org/10.1007/s12975-013-0313-y

    Article  CAS  Google Scholar 

  15. Ishibashi T, Murayama Y, Urashima M, Saguchi T, Ebara M, Arakawa H, Irie K, Takao H, Abe T (2009) Unruptured intracranial aneurysms: incidence of rupture and risk factors. Stroke 40:313–316. https://doi.org/10.1161/strokeaha.108.521674

    Article  Google Scholar 

  16. Jayaraman T, Berenstein V, Li X, Mayer J, Silane M, Shin YS, Niimi Y, Kilic T, Gunel M, Berenstein A (2005) Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery 57:558–564. https://doi.org/10.1227/01.neu.0000170439.89041.d6

    Article  Google Scholar 

  17. Juvela S, Poussa K, Lehto H, Porras M (2013) Natural history of unruptured intracranial aneurysms. Stroke 44:2414–2421. https://doi.org/10.1161/strokeaha.113.001838

    Article  Google Scholar 

  18. Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van Rooijen N, Lawton MT, Young WL, Liang EI, Nuki Y, Hashimoto T (2011) Critical roles of macrophages in the formation of intracranial aneurysm. Stroke 42:173–178. https://doi.org/10.1161/STROKEAHA.110.590976

    Article  Google Scholar 

  19. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R (1999) Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30:1396–1401. https://doi.org/10.1161/01.str.30.7.1396

    Article  CAS  Google Scholar 

  20. Ke X, Chen C, Song Y, Cai Q, Li J, Tang Y, Han X, Qu W, Chen A, Wang H, Xu G, Liu D (2019) Hypoxia modifies the polarization of macrophages and their inflammatory microenvironment, and inhibits malignant behavior in cancer cells. Oncol Lett. https://doi.org/10.3892/ol.2019.10956

    Article  Google Scholar 

  21. Krings T, Mandell DM, Kiehl TR, Geibprasert S, Tymianski M, Alvarez H, terBrugge KG, Hans FJ (2011) Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat Rev Neurol 7:547–559. https://doi.org/10.1038/nrneurol.2011.136

    Article  CAS  Google Scholar 

  22. Kurki MI, Häkkinen SK, Frösen J, Tulamo R, von und zu Fraunberg M, Wong G, Tromp G, Niemelä M, Hernesniemi J, Jääskeläinen JE, Ylä-Herttuala S (2011) Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: an emerging regulative role of Toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factors. Neurosurgery 68:1667–1675. https://doi.org/10.1227/NEU.0b013e318210f001 (discussion 1675-1666)

    Article  Google Scholar 

  23. Laaksamo E, Tulamo R, Liiman A, Baumann M, Friedlander RM, Hernesniemi J, Kangasniemi M, Niemelä M, Laakso A, Frösen J (2013) Oxidative stress is associated with cell death, wall degradation, and increased risk of rupture of the intracranial aneurysm wall. Neurosurgery 72:109–117. https://doi.org/10.1227/NEU.0b013e3182770e8c

    Article  Google Scholar 

  24. Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. The Lancet 389:655–666. https://doi.org/10.1016/s0140-6736(16)30668-7

    Article  Google Scholar 

  25. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555. https://doi.org/10.1016/s1471-4906(02)02302-5

    Article  CAS  Google Scholar 

  26. Martin-Ventura JL, Madrigal-Matute J, Martinez-Pinna R, Ramos-Mozo P, Blanco-Colio LM, Moreno JA, Tarin C, Burillo E, Fernandez-Garcia CE, Egido J, Meilhac O, Michel JB (2012) Erythrocytes, leukocytes and platelets as a source of oxidative stress in chronic vascular diseases: detoxifying mechanisms and potential therapeutic options. Thromb Haemost 108:435–442. https://doi.org/10.1160/th12-04-0248

    Article  CAS  Google Scholar 

  27. Martinez-Pinna R, Ramos-Mozo P, Madrigal-Matute J, Blanco-Colio LM, Lopez JA, Calvo E, Camafeita E, Lindholt JS, Meilhac O, Delbosc S, Michel JB, Vega de Ceniga M, Egido J, Martin-Ventura JL (2011) Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 31:935–943. https://doi.org/10.1161/atvbaha.110.214429

    Article  CAS  Google Scholar 

  28. Meng H, Tutino VM, Xiang J, Siddiqui A (2014) High WSS or Low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. Am J Neuroradiol 35:1254–1262. https://doi.org/10.3174/ajnr.a3558

    Article  CAS  Google Scholar 

  29. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, De Rooij NK, Rinkel GJ (2009) Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol 8:635–642. https://doi.org/10.1016/s1474-4422(09)70126-7

    Article  Google Scholar 

  30. Nowicki KW, Hosaka K, Walch FJ, Scott EW, Hoh BL (2018) M1 macrophages are required for murine cerebral aneurysm formation. J Neurointerv Surg 10:93–97. https://doi.org/10.1136/neurintsurg-2016-012911

    Article  Google Scholar 

  31. Ollikainen E, Tulamo R, Frosen J, Lehti S, Honkanen P, Hernesniemi J, Niemela M, Kovanen PT (2014) Mast cells, neovascularization, and microhemorrhages are associated with saccular intracranial artery aneurysm wall remodeling. J Neuropathol Exp Neurol 73:855–864. https://doi.org/10.1097/NEN.0000000000000105

    Article  CAS  Google Scholar 

  32. Ollikainen E, Tulamo R, Kaitainen S, Honkanen P, Lehti S, Liimatainen T, Hernesniemi J, Niemela M, Kovanen PT, Frosen J (2018) Macrophage infiltration in the saccular intracranial aneurysm wall as a response to locally lysed erythrocytes that promote degeneration. J Neuropathol Exp Neurol 77:890–903. https://doi.org/10.1093/jnen/nly068

    Article  CAS  Google Scholar 

  33. Signorelli F, Sela S, Gesualdo L, Chevrel S, Tollet F, Pailler-Mattei C, Tacconi L, Turjman F, Vacca A, Schul DB (2018) Hemodynamic stress, inflammation, and intracranial aneurysm development and rupture: a systematic review. World Neurosurg 115:234–244. https://doi.org/10.1016/j.wneu.2018.04.143

    Article  Google Scholar 

  34. Tulamo R, Frosen J, Hernesniemi J, Niemela M (2018) Inflammatory changes in the aneurysm wall: a review. J Neurointerv Surg 10:i58–i67. https://doi.org/10.1136/jnis.2009.002055.rep

    Article  Google Scholar 

  35. Tulamo R, Frösen J, Junnikkala S, Paetau A, Pitkäniemi J, Kangasniemi M, Niemelä M, Jääskeläinen J, Jokitalo E, Karatas A, Hernesniemi J, Meri S (2006) Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery 59:1069–1076. https://doi.org/10.1227/01.Neu.0000245598.84698.26 (discussion 1076-1067)

    Article  Google Scholar 

  36. Van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. The Lancet 369:306–318. https://doi.org/10.1016/s0140-6736(07)60153-6

    Article  Google Scholar 

  37. Vlak MH, Algra A, Brandenburg R, Rinkel GJ (2011) Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 10:626–636. https://doi.org/10.1016/s1474-4422(11)70109-0

    Article  Google Scholar 

  38. Vorp DA, Lee PC, Wang DHJ, Makaroun MS, Nemoto EM, Ogawa S, Webster MW (2001) Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg 34:291–299. https://doi.org/10.1067/mva.2001.114813

    Article  CAS  Google Scholar 

  39. Yamashiro S, Uchikawa H, Yoshikawa M, Kuriwaki K, Hitoshi Y, Yoshida A, Komohara Y, Mukasa A (2019) Histological analysis of infiltrating macrophages in the cerebral aneurysm walls. J Clin Neurosci 67:204–209. https://doi.org/10.1016/j.jocn.2019.05.027

    Article  Google Scholar 

  40. Zanaty M, Roa JA, Nakagawa D, Chalouhi N, Allan L, Al Kasab S, Limaye K, Ishii D, Samaniego EA, Jabbour P, Torner JC, Hasan DM (2019) Aspirin associated with decreased rate of intracranial aneurysm growth. J Neurosurg 1–8. https://doi.org/10.3171/2019.6.jns191273

Download references

Acknowledgements

We would like to acknowledge Dr. Jan Lodin, a native speaker, for his assistance in proofreading the manuscript.

Funding

The study was supported by the Grants of the Ministry of Health of Czech Republic (NU22-08–00124, NV19-04–00270), and the Internal Grant Agency of the Krajská zdravotní (IGA-KZ-2019–1-11). The figures were created (Fig. 3) and arranged (Fig. 2 and Fig. 4) with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Hejčl.

Ethics declarations

Ethics approval

The approval of the Ethics Committee of Masaryk Hospital, Ústí nad Labem (Reference Number: 238/59), was obtained on 22 June 2016.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vascular Neurosurgery - Aneurysm

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stratilová, M.H., Koblížek, M., Štekláčová, A. et al. Increased macrophage M2/M1 ratio is associated with intracranial aneurysm rupture. Acta Neurochir 165, 177–186 (2023). https://doi.org/10.1007/s00701-022-05418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-022-05418-0

Keywords

Navigation