Skip to main content

Advertisement

Log in

Zinc isotopes reveal disparate enriched sources of contemporary lamprophyres in Eastern Dharwar Craton

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Lamprophyres are mantle-derived rocks characterized by enrichment of incompatible elements and volatiles; however, the origin of their enriched sources remains enigmatic. Here we present zinc isotopic data for contemporary Mesoproterozoic (~ 1.1 Ga) lamprophyres from three localities of the Eastern Dharwar Craton. The Mudigubba and Kadiri lamprophyres with island-arc basalt (IAB)-like trace element features, such as positive Pb and negative Nb–Ta, Zr–Hf and Ti anomalies, have mid-ocean ridge basalt (MORB)-like δ66Zn values ranging from + 0.22‰ to + 0.29‰. In contrast, the Udiripikonda lamprophyre shows higher-than-MORB δ66Zn values of + 0.39‰ to + 0.48‰ and elemental features of intra-plate magmas with a lack of pronounced Nb–Ta-negative anomalies. Based on the covariations between Zn isotopes and trace element ratios, we infer that the Mudigubba and Kadiri lamprophyres with MORB-like Zn isotopes and high Ba/La, K/Nb and low Nb/La, Ce/Pb ratios are inherited from sub-continental lithospheric mantle metasomatized by fluids derived from a subducted slab. On the contrary, the higher-than-MORB Zn isotopic compositions, with low Ba/La, K/Nb and high Nb/La, Ce/Pb, K/U and Ba/Th ratios for the Udiripikonda lamprophyre are inferred to derive from lithospheric mantle enriched by carbonatitic melts or subducted carbonate-bearing sediments within the mantle transition zone. Hence, our study suggests that contemporary lamprophyres can be derived from disparate enriched mantle sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are avaliable in the supplementray material of this article.

References

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53(1):197–214

    Google Scholar 

  • Basu AR, Wang J, Huang W, Xie G, Tatsumoto M (1991) Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth Planet Sci Lett 105(1–3):149–169

    Google Scholar 

  • Bentahila Y, Ben Othman D, Luck J (2008) Strontium, lead and zinc isotopes in marine cores as tracers of sedimentary provenance: a case study around Taiwan orogen. Chem Geol 248(1–2):62–82

    Google Scholar 

  • Beunon H, Mattielli N, Doucet LS, Moine B, Debret B (2020) Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling. Earth Sci Rev 205:103174

    Google Scholar 

  • Chalapathi Rao N, Giri RK, Sharma A, Pandey A (2020) Lamprophyres from the Indian shield: A review of their occurrence, petrology, tectonomagmatic significance and relationship with the Kimberlites and related rocks. Episodes J Int Geosci 43(1):231–248

    Google Scholar 

  • Chatterjee A, Chalapathi Rao NV, Pandey R, Pandey A (2023) Mantle transition zone-derived eclogite xenolith entrained in a diamondiferous Mesoproterozoic (∼1.1 Ga) kimberlite from the Eastern Dharwar Craton, India: evidence from a coesite, K-omphacite, and majoritic garnet assemblage. Geol Mag 160(5):874–887

  • Chen Y, Zhang Y, Graham D, Su S, Deng J (2007) Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos 96(1–2):108–126

    Google Scholar 

  • Chen H, Savage PS, Teng F, Helz RT, Moynier F (2013) Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth Planet Sci Lett 369–370:34–42

    Google Scholar 

  • Chen X, Sageman BB, Yao H, Liu SA, Han K, Zou Y, Wang C (2021) Zinc isotope evidence for paleoenvironmental changes during Cretaceous Oceanic Anoxic Event 2. Geology 49(4):412–416

    Google Scholar 

  • Choi E, Fiorentini ML, Giuliani A, Foley SF, Maas R, Taylor WR (2020) Subduction-related petrogenesis of Late Archean calc-alkaline lamprophyres in the Yilgarn Craton (Western Australia). Precambrian Res 338:105550

    Google Scholar 

  • Choi SH, Liu S (2022) Zinc isotopic systematics of the Mt. Baekdu and Jeju Island intraplate basalts in Korea, and implications for mantle source lithologies. Lithos 416–417:106659

  • Chu Z, Harvey J, Liu C, Guo J, Wu F, Tian W, Zhang Y, Yang Y (2013) Source of highly potassic basalts in northeast China: Evidence from Re-Os, Sr-Nd-Hf isotopes and PGE geochemistry. Chem Geol 357:52–66

    Google Scholar 

  • Churikova T, Dorendorf F, Woerner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42(8):1567–1593

    Google Scholar 

  • Day JMD, Moynier F, Ishizuka O (2022) A partial melting control on the Zn isotope composition of basalts. Geochem Perspect Lett 23:11–16

    Google Scholar 

  • Fan Q, Hooper PR (1991) The Cenozoic basaltic rocks of eastern China: petrology and chemical composition. J Petrol 32(4):765–810

    Google Scholar 

  • Grassi D, Schmidt MW (2011) The melting of carbonated pelites from 70 to 700 km depth. J Petrol 52(4):765–789

    Google Scholar 

  • Guo F, Fan W, Wang Y, Zhang M (2004) Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos 78(3):291–305

    Google Scholar 

  • Gupta S, Rai SS, Prakasam KS, Srinagesh D, Bansal BK, Chadha RK, Priestley K, Gaur VK (2003) The nature of the crust in southern India: implications for Precambrian crustal evolution. Geophys Res Lett 30(8)

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385(6613):219–229

    Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79(1–2):33–45

    Google Scholar 

  • Hsu C, Chen J (1998) Geochemistry of late Cenozoic basalts from Wudalianchi and Jingpohu areas, Heilongjiang Province, northeast China. J Asian Earth Sci 16(4):385–405

    Google Scholar 

  • Huang J, Liu S, Gao Y, Xiao Y, Chen S (2016) Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific. J Geophys Res 121(10):7086–7100

    Google Scholar 

  • Huang J, Chen S, Zhang XC, Huang F (2018a) Effects of melt percolation on Zn isotope heterogeneity in the mantle: constraints from Peridotite Massifs in Ivrea-Verbano Zone, Italian Alps. J Geophys Res 123(4):2706–2722

    Google Scholar 

  • Huang J, Zhang X, Chen S, Tang L, Wörner G, Yu H, Huang F (2018b) Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting. Geochim Cosmochim Acta 238:85–101

    Google Scholar 

  • Inglis EC, Debret B, Burton KW, Millet M, Pons M, Dale CW, Bouilhol P, Cooper M, Nowell GM, McCoy-West AJ, Williams HM (2017) The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: a case study from Western Alpine ophiolites. Geochem Geophys Geosyst 18(7):2562–2579

    Google Scholar 

  • Jin Q, Huang J, Liu S, Huang F (2020) Magnesium and zinc isotope evidence for recycled sediments and oceanic crust in the mantle sources of continental basalts from eastern China. Lithos 370–371:105627

    Google Scholar 

  • John SG, Kunzmann M, Townsend EJ, Rosenberg AD (2017) Zinc and cadmium stable isotopes in the geological record: a case study from the post-snowball Earth Nuccaleena cap dolostone. Palaeogeogr Palaeoclimatol Palaeoecol 466:202–208

    Google Scholar 

  • Karsli O, Dokuz A, Kaliwoda M, Uysal I, Aydin F, Kandemir R, Fehr K (2014) Geochemical fingerprints of Late Triassic calc-alkaline lamprophyres from the Eastern Pontides, NE Turkey: A key to understanding lamprophyre formation in a subduction-related environment. Lithos 196–197:181–197

    Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437(7059):724–727

    Google Scholar 

  • Krmíček L, Chalapathi Rao NV (2022) Lamprophyres, lamproites and related rocks as tracers to supercontinent cycles and metallogenesis. In, vol 513. The Geological Society of London, pp 1–16

  • Kunzmann M, Halverson GP, Sossi PA, Raub TD, Payne JL, Kirby J (2013) Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology 41(1):27–30

    Google Scholar 

  • Kuritani T, Kimura J, Ohtani E, Miyamoto H, Furuyama K (2013) Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos 156–159:1–12

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J (2002) Igneous rocks. A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, Cambridge University Press, Cambridge 2

  • Little SH, Vance D, McManus J, Severmann S (2016) Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes. Geology (boulder) 44(3):207–210

    Google Scholar 

  • Little SH, Wilson DJ, Rehkämper M, Adkins JF, Robinson LF, van de Flierdt T (2021) Cold-water corals as archives of seawater Zn and Cu isotopes. Chem Geol 578:120304

    Google Scholar 

  • Liu C, Masuda A, Xie G (1994) Major- and trace-element compositions of Cenozoic basalts in eastern China: Petrogenesis and mantle source. Chem Geol 114(1–2):19–42

    Google Scholar 

  • Liu S, Wang Z, Li S, Huang J, Yang W (2016) Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet Sci Lett 444:169–178

    Google Scholar 

  • Liu J, Chen L, Wang X, Zhong Y, Yu X, Zeng G, Erdmann S (2017a) The role of melt-rock interaction in the formation of Quaternary high-MgO potassic basalt from the Greater Khingan Range, northeast China. J Geophys Res 122(1):262–280

    Google Scholar 

  • Liu S, Wu H, Shen S, Jiang G, Zhang S, Lv Y, Zhang H, Li S (2017b) Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction. Geology 45(4):343–346

    Google Scholar 

  • Liu S, Liu P, Lv Y, Wang Z, Dai J (2019) Cu and Zn isotope fractionation during oceanic alteration: Implications for Oceanic Cu and Zn cycles. Geochim Cosmochim Acta 257:191–205

    Google Scholar 

  • Liu J, Chen L, Wang X, Zhang X, Zeng G, Erdmann S, Murphy DT, Collerson KD, Komiya T, Krmíček L (2022a) Magnesium and zinc isotopic evidence for the involvement of recycled carbonates in the petrogenesis of Gaussberg lamproites. Antarctica Chem Geol 609:121067

    Google Scholar 

  • Liu S, Qu Y, Wang Z, Li M, Yang C, Li S (2022b) The fate of subducting carbon tracked by Mg and Zn isotopes: a review and new perspectives. Earth Sci Rev 228:104010

    Google Scholar 

  • Liu S, Wu T, Li S, Wang Z, Liu J (2022c) Contrasting fates of subducting carbon related to different oceanic slabs in East Asia. Geochim Cosmochim Acta 324:156–173

    Google Scholar 

  • Liu B, Zhang Z, Giuliani A, Xie Q, Kong W, Wang C, Wei B, Ke S, Santosh M, Zhang B, Zhang X, Krmíček L (2023) A Mantle Plume Connection for Alkaline Lamprophyres (Sannaites) from the Permian Tarim Large Igneous Province: Petrological, Geochemical and Isotopic Constraints. J Petrol 64(2)

  • Lustrino M, Agostini S, Chalal Y, Fedele L, Stagno V, Colombi F, Bouguerra A (2016) Exotic lamproites or normal ultrapotassic rocks? The Late Miocene volcanic rocks from Kef Hahouner, NE Algeria, in the frame of the circum-Mediterranean lamproites. J Volcanol Geotherm Res 327:539–553

    Google Scholar 

  • Lv Y, Liu S, Wu H, Hohl SV, Chen S, Li S (2018) Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: diagenesis assessment and implications. Geochim Cosmochim Acta 239:330–345

    Google Scholar 

  • Ma L, Jiang S, Hofmann AW, Dai B, Hou M, Zhao K, Chen L, Li J, Jiang Y (2014) Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: a consequence of rapid lithospheric thinning beneath the North China Craton? Geochim Cosmochim Acta 124:250–271

    Google Scholar 

  • Madhavan V, David K, Mallikharjuna Rao J, Chalapathi Rao NV, Srinivas M (1998) Comparative study of lamprophyres from the Cuddapah intrusive province (CIP) of Andhra Pradesh, India. J-Geol Soc India 52:621–642

    Google Scholar 

  • Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156(1):251–273

    Google Scholar 

  • Maréchal CN, Nicolas E, Douchet C, Albarède F (2000) Abundance of zinc isotopes as a marine biogeochemical tracer. Geochemistry, Geophysics, Geosystems 1(5)

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120(3):223–253

    Google Scholar 

  • Moynier F, Vance D, Fujii T, Savage P (2017) The Isotope Geochemistry of Zinc and Copper. Rev Mineral Geochem 82(1):543–600

    Google Scholar 

  • Müller D, Groves DI (2019) Tectonic settings of potassic igneous rocks. In: Potassic Igneous Rocks and Associated Gold-Copper Mineralization, vol. Springer, pp 31–71

  • Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol 43(6):981–1001

    Google Scholar 

  • Pandey A, Chalapathi Rao NV, Chakrabarti R, Pandit D, Pankaj P, Kumar A, Sahoo S (2017a) Petrogenesis of a Mesoproterozoic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field, eastern Dharwar craton, southern India: Geochemical and Sr-Nd isotopic evidence for a modified sub-continental lithospheric mantle source. Lithos 292–293:218–233

    Google Scholar 

  • Pandey A, Chalapathi Rao NV, Pandit D, Pankaj P, Pandey R, Sahoo S, Kumar A (2017b) Subduction -tectonics in the evolution of the eastern Dharwar craton, southern India: Insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin. Precambrian Res 298:235–251

    Google Scholar 

  • Pandey A, Chalapathi Rao NV, Chakrabarti R, Pankaj P, Pandit D, Pandey R, Sahoo S (2018) Post-collisional calc-alkaline lamprophyres from the Kadiri greenstone belt: Evidence for the Neoarchean convergence-related evolution of the Eastern Dharwar Craton and its schist belts. Lithos 320–321:105–117

    Google Scholar 

  • Pandey A, Chalapathi Rao NV, Chakrabarti R (2020) Mesoproterozoic 40Ar/39Ar Age and Sr–Nd Isotopic Geochemistry of Calc-alkaline Lamprophyre fromthe Mudigubba Area, Eastern Dharwar Craton. India Curr Sci 119(7):1142–1148

    Google Scholar 

  • Pandey A, Rao NVC (2020) Supercontinent transition as a trigger for ~1.1 Gyr diamondiferous kimberlites and related magmatism in India. Lithos 370–371:105620

  • Pichat S, Douchet C, Albarède F (2003) Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth Planet Sci Lett 210(1–2):167–178

    Google Scholar 

  • Plank T (2014) The chemical composition of subducting sediments. Treatise Geochem 4:607–629

    Google Scholar 

  • Pons M, Quitté G, Fujii T, Rosing MT, Reynard B, Moynier F, Douchet C, Albarède F (2011) Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proc Natl Acad Sci 108(43):17639–17643

    Google Scholar 

  • Qu Y, Liu S, Wu H, Li M, Tian H (2022) Tracing carbonate dissolution in subducting sediments by zinc and magnesium isotopes. Geochim Cosmochim Acta 319:56–72

    Google Scholar 

  • Rapp RP, Irifune T, Shimizu N, Nishiyama N, Norman MD, Inoue T (2008) Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle. Earth Planet Sci Lett 271(1–4):14–23

    Google Scholar 

  • Rock NM (1987) The nature and origin of lamprophyres: an overview. Geol Soc Lond Spec Publ 30(1):191–226

    Google Scholar 

  • Soder CG, Romer RL (2018) Post-collisional potassic-ultrapotassic magmatism of the variscan orogen: implications for mantle metasomatism during continental subduction. J Petrol 59(6):1007–1034

    Google Scholar 

  • Soder C, Altherr R, Romer RL (2016) Mantle metasomatism at the edge of a retreating subduction zone: late Neogene Lamprophyres from the Island of Kos. Greece J Petrol 57(9):1705–1728

    Google Scholar 

  • Sonke J, Sivry Y, Viers J, Freydier R, Dejonghe L, Andre L, Aggarwal J, Fontan F, Dupre B (2008) Historical variations in the isotopic composition of atmospheric zinc deposition from a zinc smelter. Chem Geol 252(3–4):145–157

    Google Scholar 

  • Sun P, Niu Y, Duan M, Chen S, Guo P, Gong H, Xiao Y, Wang X (2023) Zinc isotope fractionation during mid-ocean ridge basalt differentiation: evidence from lavas on the East Pacific Rise at 10°30′N. Geochim Cosmochim Acta 346:180–191

    Google Scholar 

  • Sweere TC, Dickson AJ, Jenkyns HC, Porcelli D, Elrick M, van den Boorn SH, Henderson GM (2018) Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous). Geology 46(5):463–466

    Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Kjarsgaard BA (2005) Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rationale and implications. J Petrol 46(9):1893–1900

    Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. J Petrol 47(7):1261–1315

    Google Scholar 

  • Thomson AR, Walter MJ, Kohn SC, Brooker RA (2016) Slab melting as a barrier to deep carbon subduction. Nature 529(7584):76–79

    Google Scholar 

  • Vance D, Little SH, Archer C, Cameron V, Andersen MB, Rijkenberg M, Lyons TW (2016) The oceanic budgets of nickel and zinc isotopes: the importance of sulfidic environments as illustrated by the Black Sea. Philos Trans a Math Phys Eng Sci 374(2081)

  • Vijaya Kumar K, Rathna K (2008) Geochemistry of the mafic dykes in the Prakasam alkaline province of Eastern Ghats Belt, India; implications for the genesis of continental rift-zone magmatism. Lithos 104(1–4):306–326

    Google Scholar 

  • Wang X, Chen L, Hofmann AW, Mao F, Liu J, Zhong Y, Xie L, Yang Y (2017a) Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth Planet Sci Lett 465:16–28

    Google Scholar 

  • Wang Z, Liu S, Liu J, Huang J, Xiao Y, Chu Z, Zhao X, Tang L (2017b) Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle. Geochim Cosmochim Acta 198:151–167

    Google Scholar 

  • Wang X, Liu S, Wang Z, Chen D, Zhang L (2018a) Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~ 372 Ma) mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 498:68–82

    Google Scholar 

  • Wang Z, Liu S, Chen L, Li S, Zeng G (2018b) Compositional transition in natural alkaline lavas through silica-undersaturated melt–lithosphere interaction. Geology 46(9):771–774

    Google Scholar 

  • Wang Z, Liu S (2021) Evolution of Intraplate Alkaline to Tholeiitic Basalts via Interaction Between Carbonated Melt and Lithospheric Mantle. J Petrol 62(4)

  • Wang Z, Liu S, Li S, Liu D, Liu J (2022) Linking deep CO2 outgassing to cratonic destruction. Natl Sci Rev 9(6)

  • White WM (2015) Isotopes, DUPAL, LLSVPs, and Anekantavada. Chem Geol 419:10–28

    Google Scholar 

  • Woolley AR, Bergman SC, Edgar AD, Le Bas MJ, Mitchell RH, Rock NMS, Scott Smith BH, Mitchell RH, Eby GN, Martin RF (1996) Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. Can Mineral 34:175–186

    Google Scholar 

  • Wyman DA, Ayer JA, Conceição RV, Sage RP (2006) Mantle processes in an Archean orogen: Evidence from 2.67 Ga diamond-bearing lamprophyres and xenoliths. Lithos 89(3–4):300–328

  • Xu R, Liu Y, Lambart S, Hoernle K, Zhu Y, Zou Z, Zhang J, Wang Z, Li M, Moynier F, Zong K, Chen H, Hu Z (2022) Decoupled Zn-Sr-Nd isotopic composition of continental intraplate basalts caused by two-stage melting process. Geochim Cosmochim Acta 326:234–252

    Google Scholar 

  • Yan B, Zhu X, He X, Tang S (2019) Zn isotopic evolution in early Ediacaran ocean: A global signature. Precambrian Res 320:472–483

    Google Scholar 

  • Yang C, Liu S (2019) Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan large igneous province. J Geophys Res 124(12):12537–12555

    Google Scholar 

  • Yang C, Liu S, Zhang L, Wang Z, Liu P, Li S (2021) Zinc isotope fractionation between Cr-spinel and olivine and its implications for chromite crystallization during magma differentiation. Geochim Cosmochim Acta 313:277–294

    Google Scholar 

  • Yao J, Huang J, Zhang G (2022) Zinc isotope constraints on carbonated mantle sources for rejuvenated-stage lavas from Kauaʻi. Hawaiʻi Chem Geol 605:120967

    Google Scholar 

  • Zeng G, Chen L, Hofmann AW, Wang X, Liu J, Yu X, Xie L (2021) Nephelinites in eastern China originating from the mantle transition zone. Chem Geol 576:120276

    Google Scholar 

  • Zhang M, Suddaby P, Thompson RN, Thirlwall MF, Menzies MA (1995) Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. J Petrol 36(5):1275–1303

    Google Scholar 

  • Zhang X, Chen L, Wang X, Hanyu T, Hofmann AW, Komiya T, Nakamura K, Kato Y, Zeng G, Gou W, Li W (2022) Zinc isotopic evidence for recycled carbonate in the deep mantle. Nat Commun 13(1)

  • Zhao Y, Fan Q, Zou H, Li N (2014) Geochemistry of Quaternary basaltic lavas from the Nuomin volcanic field, Inner Mongolia: Implications for the origin of potassic volcanic rocks in Northeastern China. Lithos 196–197:169–180

    Google Scholar 

  • Zou H, Reid MR, Liu Y, Yao Y, Xu X, Fan Q (2003) Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chem Geol 200(1–2):189–201

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dan-Dan Li for assistance with the Zn isotopic analyses. Rong Xu and an anonymous reviewer are warmly thanked for their detailed and instructive reviews, and the editorial support of Hans Keppler is also greatly appreciated. This work was supported by the National Natural Science Foundation of China (42130310 and 41802045). LK was supported by the EXPRO 2019 project (No. 19-29124X) of the Czech Science Foundation and the RVO 67985831 project of the Institute of Geology of the Czech Academy of Sciences. NVCR thanks BHU for awarding him a faculty incentive grant (IOE). We are indebted to Daniel Müller for his comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qiang Liu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the contents of this article.

Additional information

Communicated by Hans Keppler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JQ., Chen, LH., Wang, XJ. et al. Zinc isotopes reveal disparate enriched sources of contemporary lamprophyres in Eastern Dharwar Craton. Contrib Mineral Petrol 178, 89 (2023). https://doi.org/10.1007/s00410-023-02073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-023-02073-1

Keywords

Navigation