Skip to main content
Log in

The structural studies and optical characteristics of phase-segregated Ir-doped LuFeO3−δ films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we carefully examined how Ir substitution into Fe sites can change the band of the LuFeO3 (LFO) material. LFO and Ir-doped LFO (LuFe1−xIrxO3 or LFIO for short, where x = 0.05 and 0.10) thin films were synthesized by utilizing magnetron sputtering techniques. The films were grown on silicon and indium tin oxide (ITO) substrates at 500 °C. The crystallographic orientation of the films was examined using X-ray diffraction (XRD) analysis. The crystallographic orientation of the thin films was examined using an X-ray diffractometer (XRD). For surface topography research, atomic force microscopy (AFM) was employed. To look for the recombination of photogenerated electron–hole pairs in the materials under investigation, photoluminescence (PL) spectroscopy was used. Raman spectroscopy is then utilized to gather data on crystal symmetry as well as disorders and defects in the oxide materials. It was demonstrated that the LFO band gap was altered from 2.35 to 2.72 eV by Ir substitution into Fe sites. Moreover, diffuse reflectance spectroscopy (DRS) was used to analyze conductivity, real and imaginary components of the dielectric constant, refractive index (n), extinction coefficient (k), and reflectance percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Capasso, Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987). https://doi.org/10.1126/science.235.4785.172

    Article  ADS  Google Scholar 

  2. C. Klingshirn, Semiconductor optics, 3rd edn. (Springer, Berlin, Heidelberg, 2007). https://doi.org/10.1007/978-3-540-38347-5

    Book  Google Scholar 

  3. J. Haipeng, Z. Huang, Z. Xia, M.S. Molokeev, X. Jiang, Z. Lin, V.V. Atuchin, Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalton Trans. 44(16), 7679–7686 (2015). https://doi.org/10.1039/C4DT03887H

    Article  Google Scholar 

  4. L. Ma, Z. Xia, V. Atuchin, M. Molokeev, S. Auluck, A.H. Reshak, Q. Liu, Engineering oxygen vacancies towards self-activated BaLuAlxZn4−xO7−(1–x)/2 photoluminescent materials: an experimental and theoretical analysis. Phys. Chem. Chem. Phys. 17(46), 31188–31194 (2015). https://doi.org/10.1039/C5CP05130D

    Article  Google Scholar 

  5. N.O. Azarapin, V.V. Atuchin, N.G. Maximov, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, N.P. Shestakov, A.S. Krylov, T.M. Burkhanova, S. Mukherjee, O.V. Andreev, Synthesis, structure, melting and optical properties of three complex orthorhombic sulfides BaDyCuS3, BaHoCuS3 and BaYbCuS3. Mater. Res. Bull. 140, 111314 (2021). https://doi.org/10.1016/j.materresbull.2021.111314

    Article  Google Scholar 

  6. O. Polat, Z. Durmus, F.M. Coskun, M. Coskun, A. Turut, Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd and Ir). J. Mater. Sci. 53, 3544–3556 (2018). https://doi.org/10.1007/s10853-017-1773-3

    Article  ADS  Google Scholar 

  7. O. Polat, M. Coşkun, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Turut, Os doped YMnO3 multiferroic: a study investigating the electrical properties through tuning the doping level. J. Alloys Compd. 752, 274–288 (2018). https://doi.org/10.1016/j.jallcom.2018.04.200

    Article  Google Scholar 

  8. O. Polat, M. Coşkun, F.M. Coşkun, B.Z. Kurt, Z. Durmuş, Y. Cağlar, M. Cağlar, A. Turut, Electrical characterization of Ir-doped rare-earth orthoferrite YbFeO3. J. Alloys Compd. 787, 1212–1224 (2019). https://doi.org/10.1016/j.jallcom.2019.02.141

    Article  Google Scholar 

  9. M.A. Pena, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2017 (2001). https://doi.org/10.1021/cr980129f

    Article  Google Scholar 

  10. O. Polat, F.M. Coşkun, M. Coşkun, Z. Durmuş, Y. Cağlar, M. Cağlar, A. Turut, Tailoring the band gap of ferroelectric YMnO3 through tuning the Os doping level. J. Mater. Sci. Mater. Electron. 30, 3443–3451 (2019). https://doi.org/10.1007/s10854-018-00619-9

    Article  Google Scholar 

  11. D. Grinberg, V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503(7477), 509–512 (2013). https://doi.org/10.1038/nature12622

    Article  ADS  Google Scholar 

  12. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.Y. Veuillen, J. Marcus, P. Kossacki, M. Potemski, Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10(6), 503–506 (2015). https://doi.org/10.1038/nnano.2015.67

    Article  ADS  Google Scholar 

  13. V. Sukhovatkin, S. Hinds, L. Brzozowski, E.H. Sargent, Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009). https://doi.org/10.1126/science.1173812

    Article  ADS  Google Scholar 

  14. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011). https://doi.org/10.1038/nature10067

    Article  ADS  Google Scholar 

  15. M. Shang, C. Zhang, T. Zhang, L. Yuan, L. Ge, H. Yuan, S. Feng, The multiferroic perovskite YFeO3. Appl. Phys. Lett. 102, 062903 (2013). https://doi.org/10.1063/1.4791697

    Article  ADS  Google Scholar 

  16. I. Singh, S. Choudhary, S. Mehta, C. Dahiya, K.K. Walia, R. Raina, Chatterjee, Optimal multiferroic properties and enhanced magnetoelectric coupling in SmFeO3–PbTiO3 solid solutions. J. Appl. Phys. 107, 084106 (2010). https://doi.org/10.1063/1.4791697

    Article  ADS  Google Scholar 

  17. Y.-Q. Song, W.-P. Zhou, Y. Fang, Y.-T. Yang, L.-Y. Wang, D.-H. Wang, Y.-W. Du, Multiferroic properties in terbium orthoferrite. Chin. Phys. B 23, 077505 (2014). https://doi.org/10.1088/1674-1056/23/7/077505

    Article  ADS  Google Scholar 

  18. H. Yokota, T. Nozue, S. Nakamura, H. Hojo, M. Fukunaga, P.-E. Janolin, J.-M. Kiat, A. Fuwa, Ferroelectricity and weak ferromagnetism of hexagonal ErFeO3 thin films. Phys. Rev. B 92, 054101 (2015). https://doi.org/10.1103/PhysRevB.92.054101

    Article  ADS  Google Scholar 

  19. S. Cao, H. Zhao, B. Kang, J. Zhang, W. Ren, Temperature induced spin switching in SmFeO3 single crystal. Sci. Rep. 4, 5960 (2014). https://doi.org/10.1038/srep05960

    Article  ADS  Google Scholar 

  20. F. Pomiro, R.D. Sánchez, G. Cuello, A. Maignan, C. Martin, R.E. Carbonio, Spin reorientation, magnetization reversal, and negative thermal expansion observed in RFe0.5Cr0.5O3 perovskites (R = Lu, Yb, Tm). Phys. Rev. B 94, 134402 (2016). https://doi.org/10.1103/PhysRevB.94.134402

    Article  ADS  Google Scholar 

  21. O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, D.E. Brown, R. Kruk, P. Prior, B. Pyles, J.D. Jorgensen, Relationship between structural parameters and the Néel temperature in Sr1-xCaxMnO3 (0 ≤ x ≤ 1) and Sr1-yBayMnO3 (y ≤ 02). Phys. Rev. B 64, 134412 (2001). https://doi.org/10.1103/PhysRevB.64.134412

    Article  ADS  Google Scholar 

  22. G. Maris, V. Volotchaev, T.T.M. Palstra, Effect of ionic size on the orbital ordering transition in RMnO3+δ. New J. Phys. 6, 153 (2004). https://doi.org/10.1088/1367-2630/6/1/153

    Article  ADS  Google Scholar 

  23. L. Qinzhuang, L. Bing, L. Jianjun, L. Hong, L. Zhongliang, D. Kai, Z. Guangping, Z. Peng, C. Feng, D. Jianming, Structure and band gap tuning of transparent (Ba1−xSrx)SnO3 thin films epitaxially grown on MgO substrates. Europhys. Lett. 98, 47010 (2012). https://doi.org/10.1209/0295-5075/98/47010

    Article  Google Scholar 

  24. P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen, D.N. Argyriou, Structural effects on the magnetic and transport properties of perovskite A1-xA’xMnO3 (x = 0.25, 0.30). Phys Rev B 56, 8265–8276 (1997). https://doi.org/10.1103/PhysRevB.56.8265

    Article  ADS  Google Scholar 

  25. M. Coşkun, O. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Turut, Effect of Os doping on electrical properties of YMnO3 multiferroic perovskite-oxide compounds. Mater. Sci. Semicond. Process. 91, 281–289 (2019). https://doi.org/10.1016/j.mssp.2018.11.036

    Article  Google Scholar 

  26. M.K. Warshi, V. Mishra, A. Sagdeo, V. Mishra, R. Kumar, P.R. Sagdeo, Structural, optical and electronic properties of RFeO3. Ceram. Int. 44, 8344–8349 (2018). https://doi.org/10.1016/j.ceramint.2018.02.023

    Article  Google Scholar 

  27. M.S. Alkathy, M.H. Lente, J.A. Eiras, Bandgap narrowing of Ba0.92Na0.04Bi0.04TiO3 ferroelectric ceramics by transition metals doping for photovoltaic applications. Mater. Chem. Phys. 257, 123791 (2021). https://doi.org/10.1016/j.matchemphys.2020.123791

    Article  Google Scholar 

  28. M.S. Alkathy et al., Octahedral distortion and oxygen vacancies induced band-gap narrowing and enhanced visible light absorption of Co/Fe co-doped Bi3.25Nd0.75Ti3O12 ferroelectrics for photovoltaic applications. J. Phys. D: Appl. Phys. 53, 465106 (2020). https://doi.org/10.1088/1361-6463/aba930

    Article  Google Scholar 

  29. M.S. Alkathy, F.L. Zabotto, F.P. Milton, J.A. Eiras, Bandgap tuning in samarium-modified bismuth titanate by site engineering using iron and cobalt co-doping for photovoltaic application. J. Alloys Compd. 908, 164222 (2022). https://doi.org/10.1016/j.jallcom.2022.164222

    Article  Google Scholar 

  30. M. Coşkun, O. Polat, F.M. Coşkun, B. Zengin-Kurt, Z. Durmuş, M. Çağlar, A. Turut, The impact of Ir doping on the electrical properties of YbFe1-xIrxO3 perovskite-oxide compounds. J. Mater. Sci.-Mater. Electron. 31, 1731 (2020). https://doi.org/10.1007/s10854-019-02691-1

    Article  Google Scholar 

  31. O. Polat, M. Coskun, R. Kalousek, J. Zlamal, B. Zengin-Kurt, Y. Caglar, M. Caglar, A. Turut, Frequency and temperature-dependent electric modulus spectroscopy of Os doped YbFeO3-ẟ structure. J. Phys. Condens. Matter 32, 065701 (2020). https://doi.org/10.1088/1361-648X/ab4daa

    Article  ADS  Google Scholar 

  32. O. Polat, M. Caglar, F.M. Coskun, M. Coskun, Y. Caglar, A. Turut, An investigation of the optical properties of YbFe1-xIrxO3- (x = 0, 0.01 and 0.10) orthoferrite films. Vacuum 173, 109124 (2020). https://doi.org/10.1016/j.vacuum.2019.109124

    Article  ADS  Google Scholar 

  33. O. Polat, M. Caglar, F.M. Coskun, M. Coskun, Y. Caglar, A. Turut, Examination of optical properties of YbFeO3 films via doping transition element osmium. Opt. Mater. 105, 109911 (2020). https://doi.org/10.1016/j.optmat.2020.109911

    Article  Google Scholar 

  34. O. Polat, M. Coskun, D. Sobola, B. Zengin-Kurt, Y. Caglar, M. Caglar, A. Turut, Electrical and optical characterization of Os substituted rare earth orthoferrite YbFeO3-γ powders. Appl. Phys. A 127, 19 (2021). https://doi.org/10.1007/s00339-020-04182-1

    Article  ADS  Google Scholar 

  35. O. Polat, M. Çağlar, F.M. Coşkun, M. Coşkun, Y. Çağlar, A. Turut, An experimental investigation: the impact of cobalt doping on optical properties of YbFeO3-ẟ thin film. Mater. Res. Bull. 119, 110567 (2019). https://doi.org/10.1016/j.materresbull.2019.110567

    Article  Google Scholar 

  36. O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, B.Z. Kurt, Z. Durmus, M. Caglar, A. Turut, Co doped YbFeO3: exploring the electrical properties via tuning the doping level. Ionics 25, 4013–4029 (2019). https://doi.org/10.1007/s11581-019-02934-5

    Article  Google Scholar 

  37. R.P. Liferovich, R.H. Mitchell, A structural study of ternary lanthanide orthoscandate perovskites. J. Solid. State. Chem. 177, 2188 (2004). https://doi.org/10.1016/j.jssc.2004.02.025

    Article  ADS  Google Scholar 

  38. A. Bossak, I. Graboy, O. Gorbenko, A. Kaul, M. Kartavtseva, V. Svetchnikov, H. Zandbergen, XRD and HREM studies of epitaxially stabilized hexagonal orthoferrites RFeO3 (R = Eu-Lu). Chem. Mater. 16, 1751–1755 (2004). https://doi.org/10.1021/cm0353660

    Article  Google Scholar 

  39. E. Magome, C. Moriyoshi, Y. Kuroiwa, A. Masuno, H. Inoue, Noncentrosymmetric structure of LuFeO3 in metastable state. Japan. J. Appl. Phys. 49, 09ME06 (2010). https://doi.org/10.1143/JJAP.49.09ME06

    Article  Google Scholar 

  40. S. Leelashree, S. Srinath, Investigation of structural, ferroelectric, and magnetic properties of La-doped LuFeO3 nanoparticles. J. Supercond. Nov. Magn. 33, 1587–1591 (2020). https://doi.org/10.1007/s10948-019-5114-4

    Article  Google Scholar 

  41. S. Chaturvedi, S.K. Singh, P. Shyam, M.M. Shirlokar, S. Krishna, M. Boomishankar, S. Ogale, Nanoscale LuFeO3: shape dependent ortho/hexaphase constitution and nanogenerator application. Nanoscale 10, 21406 (2018). https://doi.org/10.1039/c8nr07825d

    Article  Google Scholar 

  42. H. Han, D. Kim, S. Chae, J. Park, S.Y. Nam, M. Choi, K. Yong, H.J. Kim, J. Son, H.M. Jang, Switchable ferroelectric photovoltaic effects in epitaxial h-RFeO3 thin films. Nanoscale 10, 13261 (2018). https://doi.org/10.1039/C7NR08666K

    Article  Google Scholar 

  43. W. Wang, H. Wang, X. Xu, L. Zhu, L. He, E. Wills, X. Cheng, D.J. Keavney, J. Shen, X. Wu, X. Xu, Crystal field splitting and optical bandgap of hexagonal LuFeO3 films. Appl. Phys. Lett. 101, 241907 (2012). https://doi.org/10.1063/1.4771601

    Article  ADS  Google Scholar 

  44. B.S. Holinsworth, D. Mazumdar, C.M. Brooks, J.A. Mundy, H. Das, J.G. Cherian, S.A. McGill, C.J. Fennie, D.G. Schlom, J.L. Musfeldt, Direct band gaps in multiferroic h-LuFeO3. Appl. Phys. Lett. 106, 082902 (2015). https://doi.org/10.1063/1.4908246

    Article  ADS  Google Scholar 

  45. L.P. Zhu, H.M. Deng, L. Sun, J. Yang, P.X. Yang, J.H. Chu, Optical properties of multiferroic LuFeO3 ceramics. Ceram. Int. 40, 1171–1211 (2014). https://doi.org/10.1016/j.ceramint.2013.07.001

    Article  Google Scholar 

  46. O. Polat, M. Coskun, P. Roupcová, D. Sobola, Z. Durmus, M. Caglar, T. Sikola, A. Turut, The Os substitution into Fe sites in LuFeO3 multiferroic and its effects on the electrical and dielectric properties”. J. Alloys Comp. 911, 165035 (2022). https://doi.org/10.1016/j.jallcom.2022.165035

    Article  Google Scholar 

  47. O. Polat, The role of Os substitution on structural, magnetic, and optical features of LuFeO3. Solid State Sci. 132, 106981 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106981

    Article  Google Scholar 

  48. M. Zhou, H. Yang, T. Xian, C.R. Zhang, A new photocatalyst of LuFeO3 for the dye degradation. Phys. Scripta. 90, 085808 (2015). https://doi.org/10.1088/0031-8949/90/8/085808

    Article  ADS  Google Scholar 

  49. G. Yu, Z. Mingfei, K. Martin, R. Sebastian, Formation and characterization of the iridium tetroxide molecule with iridium in the oxidation state +VIII. Angew. Chem. Int. Ed. 48, 7879–7883 (2009). https://doi.org/10.1002/ange.200902733

    Article  Google Scholar 

  50. O. Polat, M. Coşkun, P. Roupcová, Z. Durmuş, Y. Cağlar, M. Cağlar, T. Sikola, A. Turut, Influence of iridium (Ir) doping on the structural, electrical, and dielectric properties of LuFeO3 perovskite compound. J. Alloys Compd. 877, 160282 (2021). https://doi.org/10.1016/j.jallcom.2021.160282

    Article  Google Scholar 

  51. B.H. Hwang, Calculation and measurement of all (002) multiple diffraction peaks from a (001) silicon wafer. J. Phys. D: Appl. Phys. 34(16), 2469 (2001). https://doi.org/10.1088/0022-3727/34/16/311

    Article  ADS  Google Scholar 

  52. P. Zaumseil, High-resolution characterization of the forbidden Si 200 and Si 222 reflections. J. Appl. Cryst. 48, 528–532 (2015). https://doi.org/10.1107/S1600576715004732

    Article  Google Scholar 

  53. O. Polat, I. Mohelsky, J.A. Arregi, M. Horák, J. Polčak, K. Bukvišová, J. Zlamal, T. Sikola, An investigation of structural and magnetotransport features of Half-Heusler ScPtBi thin films. Mater. Res. Bull. 149, 111696 (2022). https://doi.org/10.1016/j.materresbull.2021.111696

    Article  Google Scholar 

  54. J.-C. Chen, C.-S. Chen, H. Schneider, C.-C. Chou, W.-C.J. Wei, Atomistic calculations of lattice constants of mullite with its compositions. J. Eur. Ceram. Soc. 28(2), 345–351 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.03.001

    Article  Google Scholar 

  55. E. Jedvik, A. Lindman, M.T. Benediktsson, G. Wahnstrom, Size and shape of oxygen vacancies and protons in acceptor-doped barium zirconate. Solid State Ionics 275, 2–8 (2015). https://doi.org/10.1016/j.ssi.2015.02.017

    Article  Google Scholar 

  56. M.S. Alkathy, A. Rahaman, V.R. Mastelaro, F.L. Zabotto, F.P. Milton, J.A. Eiras, Achieving high energy storage density simultaneously with large efficiency and excellent thermal stability by defect dipole, and microstructural engineering in modified-BaTiO3 ceramics. J. Alloys Compd. 934, 167887 (2023). https://doi.org/10.1016/j.jallcom.2022.167887

    Article  Google Scholar 

  57. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  MATH  ADS  Google Scholar 

  58. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceram. Int. 42(8), 10066–10070 (2016). https://doi.org/10.1016/j.ceramint.2016.03.110

    Article  Google Scholar 

  59. P.W. Chi, D.H. Wei, S.H. Wu, Y.Y. Chen, Y.D. Yao, Photoluminescence and wettability control of NiFe/ZnO heterostructure bilayer films. RSC Adv. 5, 96705–96713 (2015). https://doi.org/10.1039/c5ra13973b

    Article  ADS  Google Scholar 

  60. C.H. Chao, P.W. Chi, D.H. Wei, Investigations on the crystallographic orientation induced surface morphology evolution of ZnO thin films and their wettability and conductivity. J. Phys. Chem. C 120, 8210–8219 (2016). https://doi.org/10.1021/acs.jpcc.6b01573

    Article  Google Scholar 

  61. L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, H. Fu, Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J. Phys. Chem. B 110, 17860–17865 (2006). https://doi.org/10.1021/jp063148z

    Article  Google Scholar 

  62. E. Kroumova, M. Aroyo, J.P. Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Trans. 76, 155–170 (2003). https://doi.org/10.1080/0141159031000076110

    Article  Google Scholar 

  63. S.M. Disseler, J.A. Borchers, C.M. Brooks, J.A. Mundy, J.A. Moyer, D.A. Hillsberry, E.L. Thies, D.A. Tenne, J. Heron, M.E. Holtz, J.D. Clarkson, G.M. Stiehl, P. Schiffer, D.A. Muller, D.G. Schlom, W.D. Ratcliff, Magnetic structure and ordering of multiferroic hexagonal LuFeO3. Phys. Rev. Lett. 114, 217602 (2015). https://doi.org/10.1103/PhysRevLett.114.217602

    Article  ADS  Google Scholar 

  64. P. Suresh, K. Vijaya, Laxmi, P.S. Anil-Kumar, Synthesis and structural properties of hexagonal-LuFeO3 nanoparticles. AIP Conf. Proc. 1728, 020472 (2016). https://doi.org/10.1063/1.4946523

    Article  Google Scholar 

  65. F. Ahmad-Mir, M. Ikram, R. Kumar, Temperature-dependent Raman study of PrFeO3 thin film. J. Raman Spectrosc. 42, 201–208 (2011). https://doi.org/10.1002/jrs.2655

    Article  ADS  Google Scholar 

  66. D. Komaraiah, E. Radha, J. James, N. Kalarikkal, J. Sivakumar, M.V. Ramana-Reddy, R. Sayanna, Effect of particle size and dopant concentration on the Raman and the photoluminescence spectra of TiO2:Eu3+ nanophosphor thin films. J. Lumin. 211, 320–333 (2019). https://doi.org/10.1016/j.jlumin.2019.03.050

    Article  Google Scholar 

  67. E. Anastassakis, A. Cantarero, M. Cardona, Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys. Rev. B. 41, 7529–7535 (1990). https://doi.org/10.1103/PhysRevB.41.7529

    Article  ADS  Google Scholar 

  68. Z. Wang, W. Xiao, J. Zhang, J. Huang, M. Dong, H. Yuan, T. Xu, L. Shi, Y. Dai, Q. Liu et al., Effects of mechanochemical activation on the structural and electrical properties of orthorhombic LuFeO3 ceramics. J. Am. Ceram. Soc. 104, 3019–3029 (2021). https://doi.org/10.1111/jace.17743

    Article  Google Scholar 

  69. P. Suresh, K.V. Laxmi, A.K. Bera, S.M. Yusuf, B.L. Chittari, J. Jung, P.S. Anil-Kumar, Magnetic ground state of the multiferroic hexagonal LuFeO3. Phys. Rev. B 97, 184419 (2018). https://doi.org/10.1103/PhysRevB.97.184419

    Article  ADS  Google Scholar 

  70. V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani, C.V. Ramana, Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films. Opt. Mater. 34(5), 893–900 (2012). https://doi.org/10.1016/j.optmat.2011.11.027

    Article  ADS  Google Scholar 

  71. O.V. Andreev, V.V. Atuchin, A.S. Aleksandrovsky, Y.G. Denisenko, B.A. Zakharov, A.P. Tyutyunnik, N.N. Habibullayev, D.A. Velikanov, D.A. Ulybin, D.D. Shpindyuk, Synthesis, structure, and properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er). Crystals 12, 17 (2022). https://doi.org/10.3390/cryst12010017

    Article  Google Scholar 

  72. O. Polat, Altering magnetic and optical features of rare earth orthoferrite LuFeO3 ceramics via substitution of Ir into Fe sites. J. Solid State Chem. 305, 122701 (2022). https://doi.org/10.1016/j.jssc.2021.122701

    Article  Google Scholar 

  73. C. Rajashree, A.R. Balu, V.S. Nagarethinam, Properties of Cd doped PbS thin films: doping concentration effect. Surf. Eng. 31, 316–321 (2015)

    Article  Google Scholar 

  74. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  ADS  Google Scholar 

  75. T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. Sect. B 67, 775–782 (1954). https://doi.org/10.1088/0370-1301/67/10/306

    Article  ADS  Google Scholar 

  76. S. Husain, A.O.A. Keelani, W. Khan, Influence of Mn substitution on morphological, thermal and optical properties of nanocrystalline GdFeO3 orthoferrite. Nano-Struct. Nano-Objects 15, 17–27 (2018). https://doi.org/10.1016/j.nanoso.2018.03.002

    Article  Google Scholar 

  77. D.V. Likhachev, N. Malkova, L. Poslavsky, Modified Tauc-Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap. Thin Solid Films 589, 844–851 (2015). https://doi.org/10.1016/j.tsf.2015.07.035

    Article  ADS  Google Scholar 

  78. A.K. Walton, T.S. Moss, Determination of refractive index and correction to effective electron Mass in PbTe and PbSe. Proc. Phys. Soc. 81(3), 509–513 (1963). https://doi.org/10.1088/0370-1328/81/3/319

    Article  ADS  Google Scholar 

  79. T.S. Moss, G.J. Burrell, B. Ellis, Semiconductor opto-electronics (Halsted Press Division Wiley, New York, 1973). https://doi.org/10.1016/C2013-0-04197-7

    Book  Google Scholar 

  80. L. Zhang, X.M. Chen, Dielectric relaxation in LuFeO3 ceramics. Solid State Comm. 149, 1317–1321 (2009). https://doi.org/10.1016/j.ssc.2009.05.036

    Article  ADS  Google Scholar 

  81. F.A. Kroger, H.J. Vink, Relations between the concentrations of imperfections in crystalline solids. Solid State Phys. 3, 307–435 (1956). https://doi.org/10.1016/S0081-1947(08)60135-6

    Article  Google Scholar 

  82. Y. Ma, X.M. Chen, Y.Q. Lin, Relaxorlike dielectric behavior and weak ferromagnetism in YFeO3 ceramics. J Appl Phys 103, 124111 (2008). https://doi.org/10.1063/1.2947601

    Article  ADS  Google Scholar 

  83. V.V. Pavlov, A.R. Akbashev, A.M. Kalashnikova, V.A. Rusakov, A.R. Kaul, M. Bayer, R.V. Pisarev, Optical properties and electronic structure of multiferroic hexagonal orthoferrites RFeO3 (R = Ho, Er, Lu). J. Appl. Phys 111, 056105 (2012). https://doi.org/10.48550/arXiv.1112.5102

    Article  ADS  Google Scholar 

  84. M. Bechir, K. Karoui, M. Tabellout, K. Guidara, B.A. Rhaiem, Electric and dielectric studies of the [N(CH3)3H]2CuCl4 compound at low temperature. J. Alloy Compd. 588, 551–557 (2014). https://doi.org/10.1016/j.jallcom.2013.11.141

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through Grant No: 116F025. We acknowledge the CEITEC Nano Research Infrastructure supported by MEYS CR (LM 2018110 and Istanbul Medeniyet University Science and Advanced Technology Research Center (IMU-BILTAM).

Author information

Authors and Affiliations

Authors

Contributions

OP conceptualization, investigation, writing—original draft, funding acquisition, and supervision. FMC: validation and investigation. YY: validation and investigation. DS: validation and investigation. ME: validation and investigation. MA: validation and investigation. MC: validation and investigation. CS: validation and investigation. ZD: validation and investigation. YC: validation and investigation. MC: review and editing, investigation, validation, and supervision. AT: review and editing, and supervision.

Corresponding author

Correspondence to O. Polat.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 471 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, O., Coskun, F.M., Yildirim, Y. et al. The structural studies and optical characteristics of phase-segregated Ir-doped LuFeO3−δ films. Appl. Phys. A 129, 198 (2023). https://doi.org/10.1007/s00339-023-06486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06486-4

Keywords

Navigation