Skip to main content
Log in

Variation of bacterial community assembly over developmental stages and midgut of Dermanyssus gallinae

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacterial microbiota play an important role in the fitness of arthropods, but the bacterial microflora in the parasitic mite Dermanyssus gallinae is only partially explored; there are gaps in our understanding of the microbiota localization and in our knowledge of microbial community assembly. In this work, we have visualized, quantified the abundance, and determined the diversity of bacterial occupancy, not only across developmental stages of D. gallinae, but also in the midgut of micro-dissected female D. gallinae mites. We explored community assembly and the presence of keystone taxa, as well as predicted metabolic functions in the microbiome of the mite. The diversity of the microbiota and the complexity of co-occurrence networks decreased with the progression of the life cycle. However, several bacterial taxa were present in all samples examined, indicating a core symbiotic consortium of bacteria. The relatively higher bacterial abundance in adult females, specifically in their midguts, implicates a function linked to the biology of D. gallinae mites. If such an association proves to be important, the bacterial microflora qualifies itself as an acaricidal or vaccine target against this troublesome pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All material relevant to this publication is available in the manuscript.

Code Availability

Not applicable.

References

  1. Jiménez-Cortés JG, García-Contreras R, Bucio-Torres MI et al (2018) Bacterial symbionts in human blood-feeding arthropods: patterns, general mechanisms and effects of global ecological changes. Acta Trop 186:69–101. https://doi.org/10.1016/J.ACTATROPICA.2018.07.005

    Article  PubMed  Google Scholar 

  2. Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. https://doi.org/10.1146/ANNUREV-ENTO-010814-020822

    Article  CAS  PubMed  Google Scholar 

  3. Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc Lond B Biol Sci 366(1569):1389–1400. https://doi.org/10.1098/RSTB.2010.0226

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sigognault Flochlay A, Thomas E, Sparagano O (2017) Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasit Vectors 10:1–6. https://doi.org/10.1186/S13071-017-2292-4/FIGURES/1

    Article  Google Scholar 

  5. Pritchard J, Kuster T, Sparagano O, Tomley F (2015) Understanding the biology and control of the poultry red mite Dermanyssus gallinae: a review. Avian Pathol 44(3):143–153. https://doi.org/10.1080/03079457.2015.1030589

    Article  PubMed  Google Scholar 

  6. Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer, 1778): current situation and future prospects for control. Vet Parasitol 79:239–245. https://doi.org/10.1016/S0304-4017(98)00167-8

    Article  CAS  PubMed  Google Scholar 

  7. Price DRG, Bartley K, Blake DP et al (2021) A Rickettsiella endosymbiont is a potential source of essential B-vitamins for the poultry red mite, Dermanyssus gallinae. Front Microbiol 12:695346. https://doi.org/10.3389/FMICB.2021.695346/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  8. Di Palma A, Giangaspero A, Cafiero MA, Germinara GS (2012) A gallery of the key characters to ease identification of Dermanyssus gallinae (Acari: Gamasida: Dermanyssidae) and allow differentiation from Ornithonyssus sylviarum (Acari: Gamasida: Macronyssidae). Parasit Vectors 5:1–10. https://doi.org/10.1186/1756-3305-5-104/FIGURES/8

    Article  Google Scholar 

  9. Wang M, Zhu D, Dai J, Zhong Z, Zhang Y, Wang J (2018) Tissue localization and variation of major symbionts in Haemaphysalis longicornis, Rhipicephalus haemaphysaloides, and Dermacentor silvarum in China. Appl Environ Microbiol 84(10):e00029-18. https://doi.org/10.1128/AEM.00029-18

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148(Pt 1):257–266. https://doi.org/10.1099/00221287-148-1-257

    Article  CAS  PubMed  Google Scholar 

  11. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45. https://doi.org/10.1093/NAR/29.9.E45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guizzo MG, Neupane S, Kucera M et al (2020) Poor unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Front Cell Infect Microbiol 10:211. https://doi.org/10.3389/fcimb.2020.00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414. https://doi.org/10.1111/1462-2920.13023

    Article  CAS  PubMed  Google Scholar 

  14. Apprill A, Mcnally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137. https://doi.org/10.3354/AME01753

    Article  Google Scholar 

  15. Davis NM, DiM P, Holmes SP, Relman DA, Callahan BJ (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. https://doi.org/10.1186/s40168-018-0605-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1):90. https://doi.org/10.1186/s40168-018-0470-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yarza P, Yilmaz P, Pruesse E et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12(9):635–645. https://doi.org/10.1038/nrmicro3330

    Article  CAS  PubMed  Google Scholar 

  20. Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol 8(9):e1002687. https://doi.org/10.1371/journal.pcbi.1002687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. RStudio Team (2020) RStudio: integrated development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/

  22. Bastian M, Heymann S, Jacomy M (2009) Gephi : an open source software for exploring and manipulating networks visualization and exploration of large graphs. Third Int AAAI Conf Weblogs Soc Media. 3(1). https://doi.org/10.1609/icwsm.v3i1.13937

  23. Ruhnau B (2000) Eigenvector-centrality—a node-centrality? Soc Networks 22:357–365. https://doi.org/10.1016/S0378-8733(00)00031-9

    Article  Google Scholar 

  24. Peschel S, Müller CL, Von Mutius E, Boulesteix AL, Depner M (2021) NetCoMi: network construction and comparison for microbiome data in R. Brief Bioinform 22(4):bbaa290. https://doi.org/10.1093/BIB/BBAA290

    Article  PubMed  Google Scholar 

  25. Douglas GM, Maffei VJ, Zaneveld JR et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36. https://doi.org/10.1093/nar/28.1.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caspi R, Billington R, Fulcher CA et al (2018) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 48(D1):D445–D453. https://doi.org/10.1093/nar/gkx935

    Article  CAS  Google Scholar 

  29. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB (2014) Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2:15. https://doi.org/10.1186/2049-2618-2-15

    Article  PubMed  PubMed Central  Google Scholar 

  30. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/S13059-014-0550-8/FIGURES/9

    Article  PubMed  PubMed Central  Google Scholar 

  31. Serrato-Salas J, Gendrin M (2022) Involvement of microbiota in insect physiology: focus on B vitamins. MBio. https://doi.org/10.1128/MBIO.02225-22

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ross BD, Hayes B, Radey MC et al (2018) Ixodes scapularis does not harbor a stable midgut microbiome. ISME J 12(11):2596–2607. https://doi.org/10.1038/s41396-018-0161-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hubert J, Erban T, Kopecky J et al (2017) Comparison of microbiomes between red poultry mite populations (Dermanyssus gallinae): predominance of Bartonella-like Bacteria. Microb Ecol 74(4):947–960. https://doi.org/10.1007/S00248-017-0993-Z

    Article  PubMed  Google Scholar 

  34. Nishide Y, Sugimoto TN, Watanabe K, Egami H, Kageyama D (2022) Genetic variations and microbiome of the poultry red mite Dermanyssus gallinae. Front Microbiol 13:4315. https://doi.org/10.3389/FMICB.2022.1031535/BIBTEX

    Article  Google Scholar 

  35. Zhang R, Yu G, Huang Z, Zhang Z (2020) Microbiota assessment across different developmental stages of Dermacentor silvarum (Acari: Ixodidae) revealed stage-specific signatures. Ticks Tick Borne Dis 11(2):101321. https://doi.org/10.1016/j.ttbdis.2019.101321

    Article  PubMed  Google Scholar 

  36. Kwan JY, Griggs R, Chicana B, Miller C, Swei A (2017) Vertical vs. horizontal transmission of the microbiome in a key disease vector, Ixodes pacificus. Mol Ecol 26(23):6578–6589. https://doi.org/10.1111/mec.14391

    Article  PubMed  Google Scholar 

  37. Chicana B, Couper LI, Kwan JY, Tahiraj E, Swei A (2019) Comparative microbiome profiles of sympatric tick species from the far-western United States. Insects 10(10):353. https://doi.org/10.3390/insects10100353

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang ZY, Ali MW, Saqib HSA et al (2020) A shift pattern of bacterial communities across the life stages of the citrus red mite, Panonychus citri. Front Microbiol 11:1620. https://doi.org/10.3389/FMICB.2020.01620

    Article  PubMed  PubMed Central  Google Scholar 

  39. Menchaca AC, Visi DK, Strey OF et al (2013) Preliminary assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma americanum nymph-to-adult transition using semiconductor sequencing. PLoS One 8(6):e67129. https://doi.org/10.1371/journal.pone.0067129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Swei A, Kwan JY (2017) Tick microbiome and pathogen acquisition altered by host blood meal. ISME J 11(3):813–816. https://doi.org/10.1038/ismej.2016.152

    Article  PubMed  Google Scholar 

  41. Wu-Chuang A, Hodžić A, Mateos-Hernández L, Estrada-Peña A, Obregon D, Cabezas-Cruz A (2021) Current debates and advances in tick microbiome research. Curr Res Parasitol Vector-Borne Dis 100036. https://doi.org/10.1016/j.crpvbd.2021.100036

  42. de Almeida Lins K, Drummond MR, Velho PENF (2019) Cutaneous manifestations of bartonellosis. An Bras Dermatol 94(5):594–602. https://doi.org/10.1016/J.ABD.2019.09.024

    Article  Google Scholar 

  43. George DR, Finn RD, Graham KM et al (2015) Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science? Parasit Vectors 8:1–10. https://doi.org/10.1186/S13071-015-0768-7/FIGURES/3

    Article  Google Scholar 

  44. Valiente Moro C, Thioulouse J, Chauve C, Normand P, Zenner L (2009) Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting. Res Microbiol 160:63–70. https://doi.org/10.1016/J.RESMIC.2008.10.006

    Article  CAS  Google Scholar 

  45. Valiente Moro C, De Luna CJ, Tod A, Guy JH, Sparagano OAE, Zenner L (2009) The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents. Exp Appl Acarol 48(1–2):93–104. https://doi.org/10.1007/S10493-009-9248-0

    Article  Google Scholar 

  46. Schiavone A, Pugliese N, Otranto D et al (2022) Dermanyssus gallinae: the long journey of the poultry red mite to become a vector. Parasit Vectors 15:1–8. https://doi.org/10.1186/S13071-021-05142-1/TABLES/1

    Article  Google Scholar 

  47. Röttjers L, Faust K (2018) From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol Rev 42(6):761–780. https://doi.org/10.1093/FEMSRE/FUY030

    Article  PubMed  PubMed Central  Google Scholar 

  48. Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219. https://doi.org/10.3389/fmicb.2014.00219

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mateos-Hernández L, Obregón D, Maye J et al (2020) Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccines 8(4):702. https://doi.org/10.3390/vaccines8040702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mateos-Hernández L, Obregón D, Wu-Chuang A et al (2021) Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front Immunol 12:704621. https://doi.org/10.3389/FIMMU.2021.704621

    Article  PubMed  PubMed Central  Google Scholar 

  51. Maitre A, Wu-Chuang A, Mateos-Hernández L et al (2022) Rickettsia helvetica infection is associated with microbiome modulation in Ixodes ricinus collected from humans in Serbia. Sci Reports 12(1):11464. https://doi.org/10.1038/s41598-022-15681-x

    Article  CAS  Google Scholar 

  52. Gomard Y, Flores O, Vittecoq M et al (2021) Changes in bacterial diversity, composition and interactions during the development of the seabird tick Ornithodoros maritimus (Argasidae). Microb Ecol 81(3):770–783. https://doi.org/10.1007/S00248-020-01611-9

    Article  PubMed  Google Scholar 

  53. Aželytė J, Wu-Chuang A, Žiegytė R et al (2022) Anti-microbiota vaccine reduces avian malaria infection within mosquito vectors. Front Immunol 13:841835. https://doi.org/10.3389/FIMMU.2022.841835/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  54. Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16(9):567–576. https://doi.org/10.1038/s41579-018-0024-1

    Article  CAS  PubMed  Google Scholar 

  55. Wu-Chuang A, Obregon D, Estrada-Peña A, Cabezas-Cruz A (2021) Thermostable keystone bacteria maintain the functional diversity of the Ixodes scapularis microbiome under heat stress. Microb Ecol 84(4):1224–1235. https://doi.org/10.1007/S00248-021-01929-Y/FIGURES/9

    Article  PubMed  Google Scholar 

  56. Duron O, Morel O, Noël V et al (2018) Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr Biol 28(12):1896-1902.e5. https://doi.org/10.1016/j.cub.2018.04.038

    Article  CAS  PubMed  Google Scholar 

  57. Duron O, Gottlieb Y (2020) Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol 36(10):816–825. https://doi.org/10.1016/J.PT.2020.07.007

    Article  CAS  PubMed  Google Scholar 

  58. Fujisawa S, Murata S, Isezaki M et al (2020) Transcriptome dynamics of blood-fed and starved poultry red mites, Dermanyssus gallinae. Parasitol Int 78:102156. https://doi.org/10.1016/J.PARINT.2020.102156

    Article  CAS  PubMed  Google Scholar 

  59. Neuvonen MM, Tamarit D, Näslund K et al (2016) The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Sci Reports 6:39197. https://doi.org/10.1038/srep39197

    Article  CAS  Google Scholar 

  60. Hubert J, Nesvorna M, Sopko B, Smrz J, Klimov P, Erban T (2018) Two populations of mites (Tyrophagus putrescentiae) differ in response to feeding on feces-containing diets. Front Microbiol 9:2590. https://doi.org/10.3389/FMICB.2018.02590/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lima-Barbero JF, Díaz-Sanchez S, Sparagano O, Finn RD, de la Fuente J, Villar M (2019) Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778). Avian Pathol 48(sup1):S52–S59. https://doi.org/10.1080/03079457.2019.1635679

    Article  CAS  PubMed  Google Scholar 

  62. Sayed AM, Abdel-Wahab NM, Hassan HM, Abdelmohsen UR (2020) Saccharopolyspora: an underexplored source for bioactive natural products. J Appl Microbiol 128(2):314–329. https://doi.org/10.1111/JAM.14360

    Article  CAS  PubMed  Google Scholar 

  63. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A (2020) The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol 11:906. https://doi.org/10.3389/FIMMU.2020.00906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu YX, Song YL, Hoffmann AA, Jin PY, Huo SM, Hong XY (2019) A change in the bacterial community of spider mites decreases fecundity on multiple host plants. Microbiol Open 8(6):e00743. https://doi.org/10.1002/MBO3.743

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the International Poultry Testing Station in Ústrašice (Czech Republic) for providing us with freshly collected mites.

Funding

UMR BIPAR is supported by the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence “Integrative Biology of Emerging Infectious Diseases” (grant no. ANR-10-LABX-62-IBEID). AWC was supported by the Programa Nacional de Becas de Postgrado en el Exterior “Don Carlos Antonio López” (grant no. 205/2018). AM is supported by the “Collectivité de Corse”, grant: “Formations superieures” (SGCE – RAPPORT N° 0300). JP was supported by the Czech Science Foundation grant nos. 22-18424 M and 22-12648 J.

Author information

Authors and Affiliations

Authors

Contributions

A.W.C.: microbiome data analysis and drafting of the manuscript; D.H.: data acquisition (sorting of mites and DNA extraction); A.M.: drafting of the manuscript; L.M.H.: microbiome data processing; H.F.: data acquisition (PCR); V.U.: data acquisition (fluorescence in situ hybridisation); D.O.: software; A.C.C. and J.P. conceived the research, designed the experiments and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Alejandro Cabezas-Cruz or Jan Perner.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no competing interests.

Supplementary Information

Supplementary Fig. S1

Microscope image of dissection of D. gallinae midgut. Sequential images of the micro-dissection of midguts from adult D. gallinae females. (PNG 2607 kb)

High resolution image (TIF 25238 kb)

Supplementary Fig. S2

Keystone taxa of D. gallinae across life stages. Scatter plot showing the mean relative abundance (expressed as clr) and the eigenvector centrality of each bacterial taxon (dots or diamonds) of the microbial community of red mites at the stages of (A) eggs, larvae and protonymphs, (B) nymphs, (C) adult males and (D) adult females. Green dots or diamonds represent ubiquitous bacteria (i.e., taxa that were found across all the samples). A cutoff value of 5 was set for the mean relative abundance and 0.75 for the eigenvector centrality. Ubiquitous bacterial taxa with mean relative abundanceand eigenvector centrality equal to or higher than the cutoff values were considered as keystone taxa (Green diamonds). List of keystone taxa is displayed next to the scatterplot (PNG 165 kb)

High resolution image (TIF 10434 kb)

Supplementary Fig. S3

Uniqueor shared pathways with differential abundance in red mites at different life stages. Venn diagram showing the number of common and unique pathways whose abundance changed significantly between comparisons of eggs, larvae and protonymphs vs. nymphs, adult male vs. nymphs and adult femalevs. nymphs. (PNG 51 kb)

High resolution image (TIF 2817 kb)

Supplementary Table S1

Relative quantification of 16S rDNA of different life stages of D. gallinae. (DOCX 15 kb)

Supplementary Table S2

Bacterial taxa found as contaminants in the 16S rDNA gene sequencing datasets from red mites at different life stages. Contaminants were statistically identified (TRUE) and removed from the 16S rDNA gene sequencing datasets using the decontam R package. (XLS 1244 kb)

Supplementary Table S3

Unique or shared bacterial taxa among the life stages and in adult female gut of red mites. (XLSX 31 kb)

Supplementary Table S4

Unique or shared nodes in microbial co-occurrence networks among the life stages of red mites. (XLSX 21 kb)

Supplementary Table S5

Jaccard indexes of local centrality measures. Jaccard’s indexes for each of local centrality measures (i.e., degree, betweenness centrality, closeness centrality, eigenvector centrality and hub taxa) of the sets of most central nodes for pairwise network comparisons. The two p-values, P(J ≤ j) and P(J ≥ j), for each Jaccard’s index were added. (XLSX 17 kb)

Supplementary Table S6

List of bacterial taxa from the total diversity that can be found as a node in the microbial co-occurrence networks at different life stages of red mites. (XLSX 45 kb)

Supplementary Table S7

Predicted pathways shared between the different life stages of red mites. (XLSX 28 kb)

Supplementary Table S8

Pathways with differential abundance in red mites at different life stages. (XLSX 49 kb)

Supplementary Table S9

Unique or shared pathways with differential abundance in red mites at different life stages. (XLSX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu-Chuang, A., Hartmann, D., Maitre, A. et al. Variation of bacterial community assembly over developmental stages and midgut of Dermanyssus gallinae. Microb Ecol 86, 2400–2413 (2023). https://doi.org/10.1007/s00248-023-02244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02244-4

Keywords

Navigation