Skip to main content
Log in

Elastoplasticity of gradient-polyconvex materials

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We propose a model for rate-independent evolution in elastoplastic materials under external loading, which allows large strains. In the setting of strain-gradient plasticity with multiplicative decomposition of the deformation gradient, we prove the existence of the so-called energetic solution. The stored energy density function is assumed to depend on gradients of minors of the deformation gradient which makes our results applicable to shape-memory materials, for instance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, J.M., Currie, J.C., Olver, P.L.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bažant, Z.P., Jirásek, M.: Nonlocal integral formulation of plasticity and damage: a survey of progress. J. Engrg. Mech. 128, 1119–1149 (2002)

    Article  Google Scholar 

  4. Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59, 703–766 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benešová, B., Kružík, M., Schlömerkemper, A.: A note on locking materials and gradient polyconvexity. Math. Models Meth. Appl. Sci. 28, 2367–2401 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhattacharya, K.: Microstructure of Martensite. Why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  7. Capriz, G.: Continua with latent microstructure. Arch. Ration. Mech. Anal. 90, 43–56 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carstensen, C., Hackl, K., Mielke, A.: Nonconvex potentials and microstructures in finite-strain plasticity. Proc. Roy. Soc. Lond. A 458, 299–317 (2002)

    Article  MATH  Google Scholar 

  9. Ciarlet, P.G.: Mathematical Elasticity Vol.I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

  10. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  11. Dal Maso, G., Francfort, G., Toader, R.: Quasistatic Crack Growth in Nonlinear Elasticity. Arch. Ration. Mech. Anal. 176, 165–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davoli, E., Francfort, G.: A Critical revisiting of finite elasto-plasticity. SIAM J. Math. Anal. 47, 526–565 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A 465, 2177–2196 (2009)

  14. DeSimone, A.: Coarse-grained models of materials with non-convexfree-energy: two case studies. Comput. Methods Appl. Mech. Engrg. 193, 5129–5141 (2004)

  15. Dillon, O.W., Kratochvíl, J.: A strain gradient theory of plasticity. Int. J. Solid Struct. 6, 1513–1533 (1970)

    Article  MATH  Google Scholar 

  16. Ebobisse, F., Neff, P., Aifantis, E.: Existence result for a dislocation based model of single crystal gradient plasticity with isotropic or linear kinematic hardening. Quar. J. Mech. Appl. Math. 71, 99–124 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^p\) Spaces. Springer, New York (2007)

    MATH  Google Scholar 

  18. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135, 117 (2009)

    Google Scholar 

  19. Forest, S., Sab, K.: Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models. Math. Mech. Solids 25(7), 1429–1449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Francfort, G., Giacomini, A., Marigo, J.J.: A case study for uniqueness of elasto-plastic evolutions: The bi-axial test. J. Math. Pures et Appl. 105, 198–227 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Francfort, G., Mielke, A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Giacomini, A., Lusardi, L.: Quasistatic evolution for a model in strain gradient plasticity. SIAM J. Math. Anal. 40, 1201–1245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grandi, D., Stefanelli, U.: Finite plasticity in \(P^{\top } P\). Part I: constitutive model. Continuum Mech. Thermodyn. 29, 97–116 (2017)

  24. Grandi, D., Stefanelli, U.: Finite plasticity in \(P^{\top } P\). Part II: Quasi-Static Evolution and Linearization. SIAM J. Math. Anal. 49(2), 1356–1384 (2017)

  25. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids. 48, 989–1036 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge Univ. Press, New York (2009)

    Google Scholar 

  28. Gurtin, M.E., Anand, L.: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations. J. Mech. Phys. Solids 53, 1624–1649 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Halphen, B., Nguyen, Q.S.: Sur les matériaux standards généralisés. J. Méc. 14, 39–63 (1975)

    MATH  Google Scholar 

  30. Han, W., Reddy, B.D.: Plasticity (Mathematical Theory and Numerical Analysis). Interdisciplinary Applied Mathematics, vol. 9. Springer-Verlag, New York (1999)

  31. Hill, R.: A variational principle of maximum plastic work in classical plasticity. Q. J. Mech. Appl. Math. 1, 18–28 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  32. Horák, M., Kružík, M.: Gradient polyconvex material models and their numerical treatment. Int. J. Solids Struct. 195, 57–65 (2020)

    Article  Google Scholar 

  33. Kratochvíl, J., Kružík, M.: Energetic approach to large strain gradient crystal plasticity. Acta Polytechnica 52, 9–14 (2012)

    Article  Google Scholar 

  34. Kružík, M., Melching, D., Stefanelli, U.: Quasistatic evolution for dislocation-free finite plasticity. ESAIM Control. Optim. Calc. Var. 26,article No. 123, 23 pages, (2020) https://doi.org/10.1051/cocv/2020031

  35. Kružík, M., Pelech, P., Schlömerkemper, A.: Gradient polyconvexity in evolutionary models of shape-memory alloys. J. Optim. Th. Appl. 184, 5–20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kružík, M., Roubíček, T.: Mathematical Methods in Continuum Mechanics of Solids. Springer, Switzerland (2019)

    Book  MATH  Google Scholar 

  37. Kružík, M., Zimmer, J.: A model of shape memory alloys taking into account plasticity. IMA J. Appl. Math. 76, 193–216 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mainik, A., Mielke, A.: Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differential Equations. 22, 73–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mainik, A., Mielke, A.: Global existence for rate-independent gradient plasticity at finite strain. J. Nonlin. Sci. 19(3), 221–248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mielke, A.: Finite Elastoplasticity Lie Groups and Geodesics on SL(d). In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics, and Dynamics, pp. 61–90. Springer, New York (2002)

    Chapter  MATH  Google Scholar 

  41. Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodyn. 15, 351–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mielke, A.: Evolution of rate-independent systems. In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations: Evolutionary equations, vol. 2, pp. 461–559. Elsevier/North-Holland, Amsterdam (2005)

    Chapter  MATH  Google Scholar 

  43. Mielke, A., Roubíček, T.: A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1, 571–597 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Application. Springer, New York (2015)

    Book  MATH  Google Scholar 

  45. Mielke, A., Roubíček, T.: Rate-independent elastoplasticity at finite strains and its numerical approximation. Math. Models Methods in Appl. Sci. 26, 2203–2236 (2016)

  46. Mielke, A., Theil, F., Levitas, V.I.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162, 137–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Moreau, J.J.: Application of convex analysis to the treatment of elastoplastic systems. In: Germain, P., Nayroles, B. (eds.) Applications of Methods of Functional Analysis to Problems in Mechanics. Springer-Verlag, Berlin (1976)

    Google Scholar 

  48. Mühlhaus, H.-B., Aifantis, E.C.: A variational principle for gradient plasticity. Int. J. Solid. Structures. 28, 845–857 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids. 47, 397–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Podio-Guidugli, P.: Contact interactions, stress, and material symmetry, for nonsimple elastic materials. Theor. Appl. Mech. 28–29, 26–276 (2002)

    MathSciNet  MATH  Google Scholar 

  51. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  52. Simo, J.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and multiplicative decomposition. Part I. Continuum formulation. Comp. Meth. Appl. Mech. Engrg. 66, 199–219 (1988)

    Article  MATH  Google Scholar 

  53. Simo, J.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and multiplicative decomposition. Part II. Comput. Aspects. Comp. Meth. Appl. Mech. Engrg. 68, 1–31 (1988)

    Article  MATH  Google Scholar 

  54. Shu, Y.C., Bhattacharya, K.: Domain patterns and macroscopic behaviour of ferroelectric materials. Philosophical Magazine B. 81, 2021–2054 (2001)

    Article  Google Scholar 

  55. Suquet, P.-M.: Sur les équations de la plasticité : existence et régularité des solutions. J. Méc. 20, 3–39 (1981)

    MATH  Google Scholar 

  56. Temam, R.: Problèmes mathématiques en plasticité. In: Méthodes Mathématiques de l’Informatique, vol. 12. Gauthier-Villars, Montrouge (1983)

  57. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  58. Toupin, R.A.: Theory of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  59. Tsagrakis, I., Aifantis, E.C.: Recent developments in gradient plasticity. J. Engrg. Mater. Tech. 124, 352–357 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the GAČR projects 18-03834S (MK & JZ), 21-06569K (MK), and by the DFG Priority Programme (SPP) 2256 (JZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kružík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kružík, M., Zeman, J. Elastoplasticity of gradient-polyconvex materials. Z. Angew. Math. Phys. 72, 174 (2021). https://doi.org/10.1007/s00033-021-01603-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01603-w

Keywords

Mathematics Subject Classification

Navigation