Skip to main content
Log in

Seismic Anisotropy in the Rift of the Reykjanes Peninsula, SW Iceland, Calculated Using a New Tomographic Method

  • Regular Issue
  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A new algorithm and computer code for seismic tomography in anisotropic inhomogeneous media was developed. The new tomographic approach is a generalization of classical isotropic seismic tomography which introduces spatially and directionally varying slowness. The velocity model was considered as a stack of homogeneous blocks in contact, with each block individually parameterized using background velocities of P- and S-waves and a set of 21 anisotropy parameters. The inverse problem was solved sequentially in five steps, using the velocity model from the previous step as the starting model for the subsequent step. These steps form a chain with increasing complexity: (1) isotropic homogeneous model; (2) isotropic velocity model with vertical velocity gradient; (3) 3-D inhomogeneous isotropic velocity model; (4) 3-D inhomogeneous model with uniform anisotropy; (5) 3-D inhomogeneous generally anisotropic model. The new algorithm was applied to real bulletin data of 18 seismic stations deployed in SW Iceland and operated favourably for the monitoring of local swarm-like seismicity. Next, the resolution, robustness and accuracy of the inversion were discussed using real and synthetic data. Real data inversion revealed a predominantly depth-dependent isotropic velocity background and additional general 3-D anisotropy. The parameterization of the medium was too flexible to allow for a reliable interpretation of the anisotropy inside the elementary blocks and a cluster analysis was applied to stabilize the inversion results. Three important clusters were identified as a result. The orientation of the anisotropy (fast and slow P-wave propagation directions) of two clusters coincided with the strike of the documented faults. The orientation of the anisotropy in the third cluster was interpreted as a consequence of the fluid dynamics around Kleifarvatn Lake. The P-wave anisotropy strength reached a value of \(\pm\) 5–8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and material

Bulletin data of the Reykjanet seismic network is available upon request.

References

  • Allen, R. M., Nolet, G., Morgan, W. J., Vogfjörd, K., Nettles, M., Ekström, G., et al. (2002). Plume driven plumbing and crustal formation in Iceland. Journal of Geophysical Research, 107(B8), 2. https://doi.org/10.1029/2001JB000584.

    Article  Google Scholar 

  • Aster, R. C., Borchers, B., & Thurber, C.H., . (2005). Parameter Estimation and Inverse Problems. Amsterdam: Elsevier.

    Google Scholar 

  • Bjarnason, I. T., Menke, W., Flóvenz, O. G., & Caress, D. (1993). Tomographic image of the Mid-Atlantic Plate Boundary in southwestern Iceland. Journal of Geophysical Research, 98(B4), 6607–6622. https://doi.org/10.1029/92JB02412.

    Article  Google Scholar 

  • Björnsson, A., Eysteinsson, H., & Beblo, M. (2005). Crustal formation and magma genesis beneath Iceland: Magnetotelluric constraints. Geological Society of America Special Paper, 388, 665–686.

    Google Scholar 

  • Darbyshire, F. A., White, R. S., & Priestly, K. F. (2000). Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study. Earth and Planetary Science Letters, 181, 409–428.

    Article  Google Scholar 

  • Du, Z., Foulger, G. R., Julian, B. R., Allen, R. M., Nolet, G., Morgan, W. J., et al. (2002). Crustal structure beneath western and eastern Iceland from surface waves and receiver functions. Geophysical Journal International, 149, 349–363.

    Article  Google Scholar 

  • Farra, V., & Pšenčík, I. (2008). First-order ray computations of coupled S waves in inhomogeneous weakly anisotropic media. Geophysical Journal International, 173, 979–989.

    Article  Google Scholar 

  • Evans, J. R., Foulger, G. R., Julian, B. R., & Miller, A. D. (1996). Crustal shear-wave splitting from local earthquakes in the Hengill triple junction, southwest Iceland. Geophysical Research Letters, 23, 455–458.

    Article  Google Scholar 

  • Farra, V., & Pšenčík, I. (2016). Weak-anisotropy approximations of P-wave phase and ray velocities for anisotropy of arbitrary symmetry. Studia Geophysica et Geodaetica, 60, 403–418. https://doi.org/10.1007/s11200-015-1276-0.

    Article  Google Scholar 

  • Gallego, A., Ito, G., & Dunn, R. A. (2013). Investigating seismic anisotropy beneath the Reykjanes Ridge using models of mantle flow, crystallographic evolution, and surface wave propagation. Geochemistry, Geophysics, Geosystems, 14, 3250–3267. https://doi.org/10.1002/ggge.20204.

    Article  Google Scholar 

  • Geoffroy, L., & Dorbath, C. (2008). Deep downward fluid percolation driven by localized crust dilatation in Iceland. Geophysical Research Letters, 35, L17302. https://doi.org/10.1029/2008GL034514.

    Article  Google Scholar 

  • Greenfield, T., White, R. S., & Roecker, S. (2016). The magmatic plumbing system of the Askja central volcano, Iceland, as imaged by seismic tomography. Journal of Geophysical Research Solid Earth, 121, 7211–7229. https://doi.org/10.1002/2016JB013163.

    Article  Google Scholar 

  • Iyer, H.M. and Hirahara, K. (editors), 1993. Seismic Tomography, Theory and Practice, Published by Chapman and Hall, 2-6 Boundary Row, London SE1 8HN, UK., ISBN 0 412 37190 1.

  • Jousset, P., Blanck, H., Franke, S., Metz, M., Águstsson, K., Verdel, A. and Flovenz, O. G., (2016). Seismic Tomography in Reykjanes, SW Iceland. In European geothermal congress 2016: Strasbourg, France.

  • Li, A., & Detrick, R. S. (2006). Seismic structure of Iceland from Rayleigh wave inversions and geodynamic implications. Earth and Planetary Science Letters, 241, 901–912.

    Article  Google Scholar 

  • Málek, J., Brokešová, J., & Novotný, O. (2019). Seismic structure beneath the Reykjanes Peninsula, southwest Iceland, inferred from array-derived Rayleigh wave dispersion. Tectonophysics, 753, 1–14. https://doi.org/10.1016/j.tecto.2018.12.020.

    Article  Google Scholar 

  • Menke, W., Brandsdóttir, B., Jakobsdóttir, S., & Stefansson, R. (1994). Seismic anisotropy in the crust at the mid-Atlantic plate boundary in south-west Iceland. Geophysical Journal International, 119, 783–790.

    Article  Google Scholar 

  • Mitchell, M. A., White, R. S., Roecker, S., & Greenfield, T. (2013). Tomographic image of melt storage beneath Askja Volcano, Iceland using local microseismicity. Geophysical Research Letters, 40, 5040–5046. https://doi.org/10.1002/grl.50899.

    Article  Google Scholar 

  • Nowack, R., & Pšenčík, I. (1991). Perturbation from isotropic to anisotropic heterogeneous media in the ray approximation. Geophysical Journal International, 106, 1–10.

    Article  Google Scholar 

  • Pšenčík, I., & Farra, V. (2005). First-order ray tracing for qP waves in inhomogeneous weakly anisotropic media. Geophysics, 70, D65–D75.

    Article  Google Scholar 

  • Pšenčík, I., Růžek, B., Lokajíček, T., & Svitek, T. (2018). Determination of rock-sample anisotropy from P- and S-wave traveltime laboratory measurements. Geophysical Journal International, 214, 1088–1104.

    Article  Google Scholar 

  • Růžek, B., & Horálek, J. (2013). Three-dimensional seismic velocity model of the west Bohemia/Vogtland seismoactive region. Geophysical Journal International, 195, 1251–1256. https://doi.org/10.1093/gji/ggt295.

    Article  Google Scholar 

  • Thomsen, L. (1986). Weak seismic anisotropy. Geophysics, 51, 1954–1966.

    Article  Google Scholar 

  • Tryggvason, A., Rögnvaldsson, A. S., & Flóvenz, Ó. G. (2002). Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath Southwest Iceland. Geophysical Journal International, 151, 848–866.

    Article  Google Scholar 

  • Um, J., & Thurber, C. (1987). A fast algorithm for two-point seismic ray tracing. Bulletin of the Seismological Society of America, 77, 972–986.

    Article  Google Scholar 

  • Weir, N. R. W., White, R. S., Brandsdóttir, B., Einarsson, P., Shimamura, H., & Shiobara, H. (2001). Crustal structure of the northern Reykjanes Ridge and Reykjanes Peninsula, southwest Iceland. Journal of Geophysical Research: Solid Earth, 106(B4), 6347–6368.

    Article  Google Scholar 

  • Wolf, J., Creasy, N., Pisconti, A., Long., D, Long, M. D. Thomas, C., . (2019). An investigation of seismic anisotropy in the lowermost mantle beneath Iceland. Geophysical Journal International,219, S152–S166. https://doi.org/10.1093/gji/ggz312.

  • Zhao, D. P., Hasegawa, A., & Horiuchi, S. (1992). Tomographic Imaging of P-wave and S-wave velocity structure beneath Northeastern Japan. Journal of Geophysical Research: Solid Earth, 97(B13), 19909–19928. https://doi.org/10.1029/92JB00603.

    Article  Google Scholar 

  • www2020a. http://www.fdsn.org/networks/detail/7E_2013/.

  • www2020b. https://en.wikipedia.org/wiki/Nearest-neighbor_chain_algorithm.

Download references

Acknowledgements

This investigation was primarily supported by grant project No. GA18-05053S of the Grant Agency of the Czech Republic. Some of the theoretical parts were developed within the Consortium SW3D (http://sw3d.cz/). Most of the travel time data was sourced courtesy of the Webnet group (http://www.ig.cas.cz/en/earthquakes-west-bohemia) and the CzechGeo/EPOS project supported by the Ministry of Education, Youth and Sports, Grant No. LM2010008. Supplementary travel time data was provided by the Icelandic Meteorological Office. The author is much obliged to his colleagues, namely Josef Horálek, for his careful and professional management of the grant project, Ivan Pšenčík, for the insightful and encouraging discussions regarding the methodology, the members of the Webnet group for providing the necessary data, and to all those mentioned above for maintaining a friendly and fruitful working environment. Special thanks are to anonymous reviewer and to the editor of PAAG Jordi Julia for their critical comments which helped to improve the final version of the manuscript, and to Lucie Halášková for her excellent language correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohuslav Růžek.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Code availability

All calculations were performed by Matlab scripts which are freely accessible upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8679 KB)

Appendices

Appendix A. Relation Between Anisotropy Parameters and Elements of the Voigt Matrix

The anisotropy parameters, denoted with Greek symbols, correspond to elements A\({_{ij}}\) of the density normalized elastic moduli expressed in Voigt notation as follows:

$$\begin{aligned}&\epsilon _x=\frac{A_{11}-\alpha _0^2}{2\alpha _0^2},\nonumber \\&\quad \epsilon _y=\frac{A_{22}-\alpha _0^2}{2\alpha _0^2},\nonumber \\&\quad \epsilon _z=\frac{A_{33}-\alpha _0^2}{2\alpha _0^2},\nonumber \\&\quad \chi _x=\frac{A_{14}+2A_{56}}{\alpha _0^2},\nonumber \\&\quad \chi _y=\frac{A_{25}+2A_{46}}{\alpha _0^2},\nonumber \\&\quad \chi _z=\frac{A_{36}+2A_{45}}{\alpha _0^2},\nonumber \\&\quad \eta _x=\frac{2(A_{23}+2A_{44})-A_{22}-A_{33}}{2\alpha _0^2},\nonumber \\&\quad \eta _y=\frac{2(A_{13}+2A_{55})-A_{33}-A_{11}}{2\alpha _0^2},\nonumber \\&\quad \eta _z=\frac{2(A_{12}+2A_{66})-A_{11}-A_{22}}{2\alpha _0^2},\nonumber \\&\quad \xi _{15}=\frac{A_{25}+2A_{46}-A_{15}}{\alpha _0^2},\nonumber \\&\quad \xi _{16}=\frac{A_{36}+2A_{45}-A_{16}}{\alpha _0^2},\nonumber \\&\quad \xi _{24}=\frac{A_{14}+2A_{56}-A_{24}}{\alpha _0^2},\nonumber \\&\quad \xi _{26}=\frac{A_{36}+2A_{45}-A_{26}}{\alpha _0^2},\nonumber \\&\quad \xi _{34}=\frac{A_{14}+2A_{56}-A_{34}}{\alpha _0^2},\nonumber \\&\quad \xi _{35}=\frac{A_{25}+2A_{46}-A_{35}}{\alpha _0^2},\nonumber \\&\quad \gamma _x=\frac{A_{44}-\beta ^2}{2\beta _0^2},\nonumber \\&\quad \gamma _y=\frac{A_{55}-\beta ^2}{2\beta _0^2},\nonumber \\&\quad \gamma _z=\frac{A_{66}-\beta ^2}{2\beta _0^2},\nonumber \\&\quad \epsilon _{45}=\frac{A_{45}}{\beta _0^2},\nonumber \\&\quad \epsilon _{46}=\frac{A_{46}}{\beta _0^2},\nonumber \\&\quad \epsilon _{56}=\frac{A_{56}}{\beta _0^2} \end{aligned}$$
(A-1)

Note that there is some leeway in the selection of background velocities \(\alpha\)0 and \(\beta\)0. The transform (A-1) is therefore not unique. The fixed matrix A and different selections of background velocities generate different anisotropy parameters. However, the direction-dependent squared-velocity formula shown below is independent of the selection of \(\alpha\)0 and \(\beta\)0 for the fixed Voigt matrix A and a direction-dependent slowness formula should be calculated for such a combination of \(\alpha\)0 and \(\beta\)0 which produces a minimum norm of m (see below). If \(\alpha\)0 and \(\beta\)0 are fixed in this manner, both the transform (A-1) and inverse are unique.

Appendix B. Transformation of Anisotropy Parameters to Arbitrary Values of the Reference Isotropic Velocity

Let us reformulate the mapping in Eq. (A-1) between anisotropy parameters and elements of the Voigt matrix using vector/matrix notation. First the two parts of the vector m depending on \(\alpha\)0 and \(\beta\)0 will be separated:

$$\begin{aligned}&{\varvec{m}}=\left[ \begin{matrix}{\varvec{m}}_{\alpha }\\ {\varvec{m}}_{\beta }\end{matrix}\right] \nonumber \\&\quad {\varvec{m}}_{\alpha }=\left( \epsilon _x,\epsilon _y,\epsilon _z,\chi _x,\chi _y,\chi _z,\eta _x,\eta _y,\eta _z,\xi _{15,}\xi _{16,}\xi _{24,}\xi _{26,}\xi _{34,}\xi _{35,}\right) ^T\nonumber \\&\quad \varvec{m}_{\beta }=\left( \gamma _x,\gamma _e,\gamma _z,\epsilon _{45,}\epsilon _{46,}\epsilon _{56}\right) ^T. \end{aligned}$$
(A-2)

The transformation between the two parts \({\mathbf{m}}_\alpha\) and \({\mathbf{m}}_\beta\) and Voigt matrix elements can then be expressed as:

$$\begin{aligned} {\varvec{m}}_{\alpha }={\varvec{b}}_{\alpha }+\frac{1}{\alpha _0^2}\varvec{Q_{\alpha }}{\varvec{A}}_{\alpha },{\varvec{m}}_{\beta }={\varvec{b}}_{\beta }+\frac{1}{\beta _0^2}\varvec{Q_{\beta }}{\varvec{A}}_{\beta }. \end{aligned}$$
(A-3)

where

$$\begin{aligned}&\varvec{b}_{\alpha }= \left[ \begin{array}{lllllllllllllll} -\frac{1}{2}&-\frac{1}{2}&-\frac{1}{2}&0&0&0&0&0&0&0&0&0&0&0&0 \end{array} \right] ^T \nonumber \\&\varvec{Q}_{\alpha }= \left[ \begin{array}{lllllllllllllll} \frac{1}{2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} \frac{1}{2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{1}{2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \frac{1}{2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \frac{1}{2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \frac{1}{2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 \end{array} \right] \nonumber \\&\varvec{A}_{\alpha }= \left[ \begin{array}{l} A_{11} \\ A_{22} \\ A_{33} \\ A_{14}+2A_{56} \\ A_{25}+2A_{46} \\ A_{36}+2A_{45} \\ 2(A_{23}+2A_{44})-A_{22}-A_{33} \\ 2(A_{13}+2A_{455})-A_{33}-A_{11} \\ 2(A_{12}+2A_{66})-A_{11}-A_{22} \\ A_{25}+2A_{46}-A_{15} \\ A_{36}+2A_{45}-A_{16} \\ A_{14}+2A_{56}-A_{24} \\ A_{36}+2A_{45}-A_{26} \\ A_{14}+2A_{56}-A_{34} \\ A_{25}+2A_{46}-A_{35} \end{array} \right] \end{aligned}$$
(A-4a)

as for \({\mathbf{m}}_\alpha\) and

$$\begin{aligned}&{\varvec{b}}_{\beta }= \left[ \begin{array}{llllll} -\frac{1}{2}&-\frac{1}{2}&-\frac{1}{2}&0&0&0 \end{array} \right] ^T\nonumber \\&{\varvec{Q}}_{\beta }= \left[ \begin{array}{llllll} \frac{1}{2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} \frac{1}{2} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{1}{2} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 \end{array} \right] ,\nonumber \\&{\varvec{A}}_{\beta }= \left[ \begin{array}{l} A_{44} \\ A_{55} \\ A_{66} \\ A_{45} \\ A_{46} \\ A_{56} \end{array} \right] . \end{aligned}$$
(A-4b)

as for \({\mathbf{m}}_\beta\) .

Let us first discuss the transformation of the {\({\mathbf{m}}_\alpha\) , \(\alpha\)0} part of m to another value of reference velocity \(\alpha\)0. The index \(\alpha\) in \({\mathbf{m}}_\alpha\) will be omitted from now on in order to simplify indexing. We shall consider the pair {m0, \(\alpha\)0} \(\Leftrightarrow\) {m1, \(\alpha\)1} as two \({\mathbf{m}}_\alpha\) representations of the same Voigt matrix. Using Eq. (A-3) gives

$$\begin{aligned}{\varvec{m}}_0&={\varvec{b}}_{\alpha }+\frac{1}{\alpha _0^2}{\varvec{Q}}_{\alpha }{\varvec{A}}_{\alpha }\rightarrow {\varvec{A}}_{\alpha }=\alpha _0^2{\varvec{Q}}_{\alpha }^{-1}({\varvec{m}}_0-{\varvec{b}}_{\alpha })\nonumber \\ {\varvec{m}}_1&={\varvec{b}}_{\alpha }+\frac{1}{\alpha _1^2}{\varvec{Q}}_{\alpha }{\varvec{A}}_{\alpha }={\varvec{b}}_{\alpha } +\frac{\alpha _0^2}{\alpha _1^2}{\varvec{Q}}_{\alpha }{\varvec{Q}}_{\alpha }^{-1}({\varvec{m}}_0-{\varvec{b}}_{\alpha }) \\&={\varvec{b}}_{\alpha }+\frac{\alpha _0 ^2}{\alpha _1^2}({\varvec{m}}_0-{\varvec{b}}_{\alpha }). \end{aligned}$$
(A-5)

Once we have already {m0, \(\alpha\)0} and want to use other reference velocity \(\alpha\)1, Eq. (A-5) gives us a rule how to calculate corresponding m1. We may select \(\alpha\)1 arbitrarily, suitable choice is such \(\alpha\)1 which makes the norm of \({\mathbf{m}}_\alpha\) minimum, i.e. giving the most isotropic approximation of the actual anisotropic medium. Such value of \(\alpha\)\({_{min}}\) corresponding to m\({_{min}}\) can be determined as follows:

$$\begin{aligned}&{\varvec{m}}_{\textit{min}}= {\varvec{b}}_{\alpha }+\frac{\alpha _0^2}{\alpha _{\textit{min}}^2}({\varvec{m}}_0-{\varvec{b}}_{\alpha }), {\varvec{m}}_{\textit{min}}^T\varvec{m}_{\textit{min}}= \textit{min}(\alpha _{\textit{min}})\quad {\varvec{m}}_{\textit{min}}^T\varvec{m}_{\textit{min}}=\left( \frac{\alpha _0^2}{\alpha _{\textit{min}}^2}\right) ^2\left( {\varvec{b}}_{\alpha }^T{\varvec{b}}_{\alpha }+{\varvec{m}}_0^T{\varvec{m}}_0-2{\varvec{m}}_0^T{\varvec{b}}_{\alpha }\right)+\frac{\alpha _0^2}{\alpha _{\textit{min}}^2}\left( 2{\varvec{b}}_{\alpha }^T\varvec{m}_0-2{\varvec{b}}_{\alpha }^T{\varvec{b}}_{\alpha }\right) +{\varvec{b}}_{\alpha }^T\varvec{b}_{\alpha }=\Phi (\alpha _{\textit{min}})\quad \frac{d\Phi }{d\alpha _{\textit{min}}}=-4\frac{\alpha _0^2}{\alpha _{\textit{min}}^3}({\varvec{b}}_{\alpha }^T{\varvec{m}}_0-{\varvec{b}}_{\alpha }^T\varvec{b}_{\alpha } +\frac{\alpha _0^2}{\alpha _{\textit{min}}^2}({\varvec{b}}_{\alpha }^T{\varvec{b}}_{\alpha }\nonumber \\&+{\varvec{m}}_0^T{\varvec{m}}_0-2{\varvec{m}}_0^T{\varvec{b}}_{\alpha }))=0. \end{aligned}$$
(A-6)

Solving the last equation for \(\alpha\)\({_{min}}\) results in

$$\begin{aligned} \alpha _{\textit{min}}^2=\alpha _0^2\frac{{\varvec{b}}_{\alpha }^T{\varvec{b}}_{\alpha }+\varvec{m}_0^T{\varvec{m}}_0-2{\varvec{m}}_0^T{\varvec{b}}_{\alpha }}{{\varvec{b}}_{\alpha }^T{\varvec{b}}_{\alpha }-{\varvec{b}}_{\alpha }^T{\varvec{m}}_0} \text {.} \end{aligned}$$
(A-7)

Once we have any specification of \({\mathbf{m}}_\alpha\) given as {m0, \(\alpha\)0}, we can calculate \(\alpha\)min using Eq. (A-7) and recalculate m\({_{min}}\) using Eq. (A-6). The calculation of the optimum \(\beta\)\({_{min}}\) and m\({_{min}}\) for the \({\mathbf{m}}_\beta\) -part of m is analogous.

Appendix C. Specification of direction-defining vectors in velocity formulas

Let us review the formulae for squared direction-dependent phase velocities \(\alpha\)2 and \(\beta\)2:

$$\begin{aligned} \alpha ^2=\alpha _0^2+\alpha _0^2{\varvec{g}}^P{\varvec{m}},\beta ^2=\beta _0^2+(\beta _0^2{\varvec{g}}^{\textit{SA}}-\alpha _0^2{\varvec{g}}^{\textit{SB}}){\varvec{m}} . \end{aligned}$$
(A-8)

Separating the corresponding terms at individual elements of the vector m, one produces:

$$\begin{aligned}&{\varvec{g}}^P=2[n_1^{2,}n_2^{2,}n_3^{2,}\nonumber \\&\quad 2(n_2n_{3,}n_3n_{1,}n_1n_2),n_2^2n_3^{2,}n_1^2n_3^{2,}n_1^2n_2^{2,}\nonumber \\&\quad -2(n_1^3n_{3,}n_1^3n_{2,}n_2^3n_{3,}n_2^3n_{1,}n_3^3n_{2,}n_3^3n_1),\nonumber \\&\quad 0,0,0,0,0,0]\nonumber \\&\quad \varvec{g}^{\textit{SA}}=[ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,n_2^2+n_3^{2,}n_1^2\nonumber \\&\quad +n_3^{2,}n_1^2+n_2^{2,}n_1n_{2,}n_1n_{3,}n_2n_3]\nonumber \\&\quad \varvec{g}^{\textit{SB}}=[ 0,0,0,0,0,0,n_2^2n_3^{2,}n_1^2n_3^{2,}n_1^2n_2^{2,}\nonumber \\&\quad n_1n_3(1-2n_1^2),n_1n_2(1-2n_1^2),n_2n_3(1-2n_2^2),\nonumber \\&n_1n_2(1-2n_2^2),n_2n_3(1-2n_3^2),n_1n_3(1-2n_3^2),\nonumber \\&\quad 0,0,0,0,0,0] \end{aligned}$$
(A-9)

Note that in case of P-waves, only the first 15 anisotropy parameters are important, while in the case of S-waves, only the last 15 anisotropy parameters play a role. The direction vector = (n1n2n3)T.

Appendix D. Representative density-normalized stiffness tensors corresponding to clusters A-C in the Voigt matrix notation

The stiffness density-normalized matrices expressed in km2/s2 units are evaluated for the background velocities \(\alpha\)0 and \(\beta\)0 given as the mean background velocities for all boxes connected to a particular cluster. The coordinate system has an x-axis oriented from west to east, y axis from south to north and z axis upwards. Equation (A-10) is for cluster A (red boxes in Fig. 15), Eq. (A-11) is for cluster B (blue boxes) and Eq. (A-12) is for cluster C (green boxes).

$$\begin{aligned} {\varvec{A}}_A= \left[ \begin{matrix} 32.29 &{} 11.91 &{} 5.22 &{} -2.89 &{} 1.85 &{} 2.33 \\ 11.91 &{} 29.26 &{} 10.09 &{} -1.93 &{} 0.52 &{} 0.90 \\ 5.22 &{} 10.09 &{} 27.64 &{} -0.94 &{} 0.75 &{} 0.55 \\ -2.89 &{} -1.93 &{} -0.94 &{} 9.43 &{} 0.11 &{} 0.02 \\ 1.85 &{} 0.52 &{} 0.75 &{} 0.11 &{} 11.06 &{} 0.83 \\ 2.33 &{} 0.90 &{} 0.55 &{} 0.02 &{} 0.83 &{} 9.44 \end{matrix} \right] \text {,} \end{aligned}$$
(A-10)

with an efficient P-wave anisotropy strength of \(\pm\)5.5%

$$\begin{aligned} {\varvec{A}}_B= \left[ \begin{matrix} 30.63 &{} 11.08 &{} 6.99 &{} -2.21 &{} 1.48 &{} 1.46 \\ 11.08 &{} 29.29 &{} 11.46 &{} -0.63 &{} 2.67 &{} 0.20 \\ 6.99 &{} 11.46 &{} 23.60 &{} -1.87 &{} -0.56 &{} 1.24 \\ -2.21 &{} -0.63 &{} -1.87 &{} 8.20 &{} -0.21 &{} -1.41 \\ 1.48 &{} 2.67 &{} -0.56 &{} -0.21 &{} 9.12 &{} 0.44 \\ 1.46 &{} 0.20 &{} 1.24 &{} -1.41 &{} 0.44 &{} 9.59 \end{matrix} \right] \text {,} \end{aligned}$$
(A-11)

with an efficient P-wave anisotropy strength of \(\pm\)7.3%

$$\begin{aligned} {\varvec{A}}_C= \left[ \begin{matrix} 35.70 &{} 12.90 &{} 4.27 &{} -3.69 &{} 0.05 &{} 1.78 \\ 12.90 &{} 30.66 &{} 13.07 &{} -3.75 &{} -0.02 &{} -1.98 \\ 4.27 &{} 13.07 &{} 29.49 &{} -2.31 &{} 0.45 &{} 0.18 \\ -3.69 &{} -3.75 &{} -2.31 &{} 8.25 &{} -0.55 &{} -0.00 \\ 0.05 &{} -0.02 &{} 0.45 &{} -0.55 &{} 12.37 &{} 0.97 \\ 1.78 &{} -1.98 &{} 0.18 &{} -0.00 &{} 0.97 &{} 10.17 \end{matrix} \right] \text {,} \end{aligned}$$
(A-12)

with an efficient P-wave anisotropy strength of \(\pm\)8.1%

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Růžek, B. Seismic Anisotropy in the Rift of the Reykjanes Peninsula, SW Iceland, Calculated Using a New Tomographic Method. Pure Appl. Geophys. 178, 2871–2903 (2021). https://doi.org/10.1007/s00024-021-02784-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02784-1

Keywords

Navigation