Skip to main content
Log in

Prokaryotic community diversity during bioremediation of crude oil contaminated oilfield soil: effects of hydrocarbon concentration and salinity

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Crude oil extracted from oilfield reservoirs brings together hypersaline produced water. Failure in pipelines transporting this mixture causes contamination of the soil with oil and hypersaline water. Soil salinization is harmful to biological populations, impairing the biodegradation of contaminants. We simulated the contamination of a soil from an oilfield with produced water containing different concentrations of NaCl and crude oil, in order to evaluate the effect of salinity and hydrocarbon concentration on prokaryote community structure and biodegradation activity. Microcosms were incubated in CO2-measuring respirometer. After the incubation, residual aliphatic hydrocarbons were quantified and were performed 16S rRNA gene sequencing. An increase in CO2 emission and hydrocarbon biodegradation was observed with increasing oil concentration up to 100 g kg−1. Alpha diversity decreased in oil-contaminated soils with an increase in the relative abundance of Actinobacteria and reduction of Bacteroidetes with increasing oil concentration. In the NaCl-contaminated soils, alpha diversity, CO2 emission, and hydrocarbon biodegradation decreased with increasing NaCl concentration. There was an increase in the relative abundance of Firmicutes and Proteobacteria and a reduction of Actinobacteria with increasing salt concentration. Our results highlight the need to adopt specific bioremediation strategies in soils impacted by mixtures of crude oil and hypersaline produced water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atoufi DH, Lampert DJ (2020) Impacts of oil and gas production on contaminant levels in sediments. Curr Pollut Rep 6:43–53. https://doi.org/10.1007/s40726-020-00137-5

    Article  CAS  Google Scholar 

  2. Abdol Hamid HR, Kassim WM, El Hishir A, El-Jawashi SA (2008) Risk assessment and remediation suggestion of impacted soil by produced water associated with oil production. Environ Monit Assess 145(1-3):95–102. https://doi.org/10.1007/s10661-007-0018-3

    Article  CAS  PubMed  Google Scholar 

  3. Stewart, M., Arnold, K. (2011). Produced water treatment: field manual. part 1 - produced water treating systems, p. 1-134.

  4. Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, D’Auria G, de Lima Alves F, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9(3):801–813. https://doi.org/10.1111/j.1462-2920.2006.01212.x

    Article  CAS  PubMed  Google Scholar 

  5. Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JDR, Quinn JP, Timson DJ, Patil SV, Singhal RS, Anton J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE (2015) Is there a common water-activity limit for the three domains of life? ISME J 9:1333–1351. https://doi.org/10.1038/ismej.2014.219

    Article  CAS  PubMed  Google Scholar 

  6. Means JC (1995) Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Mar Chem 51:3–16

    Article  CAS  Google Scholar 

  7. Turner A, Rawling MC (2001) The influence of salting out on the sorption of neutral organic compounds in estuaries. Water Res 35(18):4379–4389. https://doi.org/10.1016/s0043-1354(01)00163-4

    Article  CAS  PubMed  Google Scholar 

  8. Mackay D, Shiu WY, Ma KC, Lee SC (2006) Handbook of physical-chemical and environmental fate for organic chemicals, 2nd edn. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  9. Pirnik MP, Atlas RM, Bartha R (1974) Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J Bacteriol 119(3):868–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seklemova E, Pavlova A, Kovacheva K (2001) Biostimulation-based bioremediation of diesel fuel: field demonstration. Biodegradation 12(5):311–316. https://doi.org/10.1023/a:1014356223118

    Article  CAS  PubMed  Google Scholar 

  11. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108(Supplement1):4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  12. Pylro VS, Roesch L, Ortega JM, do Amaral, A. M. (2014) Brazilian microbiome project: revealing the unexplored microbial diversity—challenges and prospects. Microb Ecol 67:237–241. https://doi.org/10.1007/s00248-013-0302-4

    Article  PubMed  Google Scholar 

  13. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  15. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu F, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seedorf H, Kittelmann S, Henderson G, Janssen PH (2014) RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ 2:e494. https://doi.org/10.7717/peerj.494

    Article  PubMed  PubMed Central  Google Scholar 

  17. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40(34):237–264

    Article  Google Scholar 

  18. Chao A (1984) Nonparametric estimation of the numbers of classes in a population. Scand J Stat 11:265270

    Google Scholar 

  19. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:623–656

    Article  Google Scholar 

  20. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

  21. Franco I, Contin M, Bragato G, De Nobili M (2004) Microbiological resilience of soils contaminated with crude oil. Geoderma 121(1):17–30. https://doi.org/10.1016/j.geoderma.2003.10.002

    Article  CAS  Google Scholar 

  22. Cury, J.D.E.C. (2002). Atividade microbiana e diversidades metabólica e genética em solo de mangue contaminado com petróleo. Master’s Dissertation. Universidade de São Paulo. São Paulo, Brazil.

  23. Hernández-López EL, Ayala M, Vazquez-Duhalt R (2015) Microbial and enzymatic biotransformations of asphaltenes. Pet Sci Technol 33:1019–1027. https://doi.org/10.1080/10916466.2015.1014960

    Article  CAS  Google Scholar 

  24. Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications, 4th edn. Menlo Park, California 694 p

    Google Scholar 

  25. Fernández, P.S.H. (2016). Predação de protozoários sobre ultramicrocélulas bacterianas degradadoras de hidrocarbonetos e seu efeito sobre a biorremediação de agregados de solo contaminados com petróleo. Master’s Dissertation, Universidade Federal de Viçosa, Brasil.

  26. El-Tarabily KA (2002) Total microbial activity composition of a mangrove sediment are reduced by oil pollution at a site in the Arabian Gulf. Can J Microbiol 48(2):176–182. https://doi.org/10.1139/w01-140

    Article  CAS  PubMed  Google Scholar 

  27. Labud V, Garcia C, Hernandez T (2007) Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66(10):1863–1871. https://doi.org/10.1016/j.chemosphere.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  28. Camacho-Montealegre CM, Rodrigues EM, Tótola MR (2019) Microbial diversity and bioremediation of rhizospheric soils from Trindade Island - Brazil. J Environ Manag 236:358–364. https://doi.org/10.1016/j.jenvman.2019.02.013

    Article  CAS  Google Scholar 

  29. Yang S, Wen X, Zhao L, Shi Y, Jin H (2014) Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route. PLoS ONE 9(5):e96552. https://doi.org/10.1371/journal.pone.0096552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodrigues EM, Kalks KHM, Tótola MR (2015) Prospect, isolation, and characterization of microorganisms for potential use in cases of oil bioremediation along the coast of Trindade Island – Brazil. J Environ Manag 156:15–22. https://doi.org/10.1016/j.jenvman.2015.03.016

    Article  CAS  Google Scholar 

  32. Kim JS, Crowley DE (2007) Microbial diversity in natural asphalts of the Rancho La Brea Tar Pits. Appl Environ Microbiol 73(14):45794591–45794591. https://doi.org/10.1128/AEM.01372-06

    Article  CAS  Google Scholar 

  33. Chaturvedi S, Khurana SMP (2019) Importance of Actinobacteria for bioremediation. In: Khurana S, Gaur R (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore

    Google Scholar 

  34. Lang S, Philp JC (1998) Surface active lipids in rhodococci. Antonie Van Leuwenhoek 74:59–70

    Article  CAS  Google Scholar 

  35. Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S (2012) Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol 112:8390. https://doi.org/10.1016/j.biortech.2012.02.059

    Article  CAS  Google Scholar 

  36. Morais D, Pylro V, Clark IM, Hirsch PR, Tótola MR (2016) Responses of microbial community from tropical pristine coastal soil to crude oil contamination. PeerJ 4:e1733. https://doi.org/10.7717/peerj.1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McGowan L, Herbert R, Muyzer G (2004) A comparative study of hydrocarbon degradation by Marinobacter sp., Rhodococcus sp. and Corynebacterium sp. isolated from different mat systems. Ophelia 58(3):271–281. https://doi.org/10.1080/00785236.2004.10410235

    Article  Google Scholar 

  38. Kurniati TH, Rusmana I, Suryani A, Mubarik NR (2016) Degradation of polycyclic aromatic hydrocarbon Pyrene by biosurfactant-producing bacteria Gordonia cholesterolivorans AMP 10. J Biol Biol Educ 8(3):336–343. https://doi.org/10.15294/biosaintifika.v8i3.6448

    Article  Google Scholar 

  39. Rodrigues EM, Teixeira AVNC, Cesar DE, Tótola MR (2020) Strategy to improve crude oil biodegradation in oligotrophic aquatic environments: W/O/W fertilized emulsions and hydrocarbonoclastic bacteria. Braz J Microbiol 51:1159–1168. https://doi.org/10.1007/s42770-020-00244-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiao N, Shao Z (2010) Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J Appl Microbiol 108(4):1207–1216. https://doi.org/10.1111/j.1365-2672.2009.04513.x

    Article  CAS  PubMed  Google Scholar 

  41. Da Silva FSP, Pylro VS, Fernandes PL, Barcelos GS, Kalks KHM, Schaefer CEGR, Tótola MR (2015) Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains. Extremophiles 19(3):561–572. https://doi.org/10.1007/s00792-015-0740-7

    Article  CAS  PubMed  Google Scholar 

  42. Fernandes PL, Rodrigues EM, Paiva FR, Ayupe BAL, McInerney MJ, Tótola MR (2016) Biosurfactant, solvents and polymer production by Bacillus subtilis RI4914 and their application for enhanced oil recovery. Fuel 180:551–557. https://doi.org/10.1016/j.fuel.2016.04.080

    Article  CAS  Google Scholar 

  43. Minai-Tehrani D, Herfatmanesh A, Azari-Dehkordi F, Minuoi S (2006) Effect of salinity on biodegradation of aliphatic fractions of crude oil in soil. Pak J Biol Sci 9(8):1531–1535 https://doi.org/10.3923/pjbs.2006.1531.1535

    Article  CAS  Google Scholar 

  44. McGenity TJ (2010) Halophilic hydrocarbon degraders. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag, Berlin, pp 1939–1951

    Chapter  Google Scholar 

  45. Ulrich AC, Guigard SE, Foght JM, Semple KM, Pooley K, Armstrong JE, Biggar KW (2009) Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater. Biodegradation 20(1):27–38. https://doi.org/10.1007/s10532-008-9196-0

    Article  CAS  PubMed  Google Scholar 

  46. Qin X, Tang JC, Li DS, Zhang QM (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55:210–217. https://doi.org/10.1111/j.1472-765X.2012.03280.x

    Article  CAS  PubMed  Google Scholar 

  47. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28(1):56–63. https://doi.org/10.1038/sj/jim/7000176

    Article  CAS  PubMed  Google Scholar 

  48. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Evol Microbiol 48:339–348. https://doi.org/10.1099/00207713-48-2-339

    Article  CAS  Google Scholar 

  49. Syutsubo K, Kishira H, Harayama S (2001) Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol 3:371–379. https://doi.org/10.1046/j.1462-2920.2001.00204.x

    Article  CAS  PubMed  Google Scholar 

  50. Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil contaminated sea water exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753. https://doi.org/10.1046/j.1468-2920.2003.00468.x

    Article  CAS  PubMed  Google Scholar 

  51. Scoma A, Boon N (2016) Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2. Front Microbiol 7:729. https://doi.org/10.3389/fmicb.2016.00729

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dastgheib SMM, Amoozegar MA, Khajeh K, Ventosa A (2011) A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl Microbiol Biotechnol 90:305–312. https://doi.org/10.1007/s00253-010-3049-6

    Article  CAS  PubMed  Google Scholar 

  53. Gu J, Cai H, Yu SL, Qu R, Yin B, Guo YF, Zhao JY, Wu XL (2007) Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 57(Pt 2):250–254. https://doi.org/10.1099/ijs.0.64522-0

    Article  CAS  PubMed  Google Scholar 

  54. Gomes MB, Gonzales-Limache EE, Sousa STP, Dellagnezze BM, Sartoratto A, Silva LCF, Gieg LM, Valoni E, Souza RS, Torres APR, Sousa MP, De Paula SO, Silva CC, Oliveira VM (2016) Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int Biodeterior Biodegrad 126:231–242. https://doi.org/10.1016/j.ibiod.2016.08.014

    Article  CAS  Google Scholar 

  55. Al-Mailem DM, Al-Deieg M, Eliyas M, Radwan SS (2017) Biostimulation of indigenous microorganisms for bioremediation of oily hypersaline microcosms from the Arabian Gulf Kuwaiti coasts. J Environ Manag 193:576–583 https://doi.org/10.1016/j.jenvman.2017.02.054

    Article  CAS  Google Scholar 

  56. Kuhlmann AU, Bremer E (2002) Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Environ Microbiol 68:772–783. https://doi.org/10.1128/AEM.68.2.772-783.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Höper D, Bernhardt J, Hecker M (2006) Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach. Proteomics 6:1550–1562. https://doi.org/10.1002/pmic.200500197

    Article  CAS  PubMed  Google Scholar 

  58. Ghani M, Ansari A, Aman A, Zohra RR, Siddiqui Nn, Qader SA (2013) Isolation and characterization of different strains of Bacillus licheniformis for the production of commercially significant enzymes. Pak J Pharm Sci 26(4):691–697

    CAS  PubMed  Google Scholar 

  59. Hui Y, Huang G, An C, Wei J (2011) Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system. J Hazard Mater 190(1-3):883–890. https://doi.org/10.1016/j.jhazmat.2011.04.026

    Article  CAS  Google Scholar 

  60. Bezza FA, Chirwa EMN (2016) Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere 144:635–644. https://doi.org/10.1016/j.chemosphere.2015.08.027

    Article  CAS  PubMed  Google Scholar 

  61. Koenigsberg SS, Sandefur CA (1999) The use of oxygen release compound for the accelerated bioremediation of aerobically degradable contaminants: the advent of time-release electron acceptors. Remediat J 10:3–29

    Article  Google Scholar 

  62. Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210. https://doi.org/10.1007/s00284-008-9309-3

    Article  CAS  PubMed  Google Scholar 

  63. Wang, X., Zheng, J., Han, Z., Chen, H., 2019. Bioremediation of crude oil-contaminatedsoil by hydrocarbon-degrading microorganisms immobilized on humic acid-modifiedbiofuel ash. Journal of Chemical Technology, Biot.10.1002/jctb.5969.

  64. Martins LF, Peixoto RS (2012) Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol 43:865–872. https://doi.org/10.1590/S1517-83822012000300003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the Brazilian Navy, FAPEMIG, and CAPES.

Funding

This work was supported by National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edmo Montes Rodrigues or Marcos Rogério Tótola.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Acacio Aparecido Navarrete

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho-Montealegre, C.M., Rodrigues, E.M., Morais, D.K. et al. Prokaryotic community diversity during bioremediation of crude oil contaminated oilfield soil: effects of hydrocarbon concentration and salinity. Braz J Microbiol 52, 787–800 (2021). https://doi.org/10.1007/s42770-021-00476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00476-5

Keywords

Navigation