Skip to main content
Log in

The plastic nervous system of Nemertodermatida

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Nemertodermatida are microscopic marine worms likely to be the sister group to acoels, forming with them the earliest extant branch of bilaterian animals, although their phylogenetic position is debated. The nervous system of Flagellophora cf. apelti, Sterreria spp. and Nemertoderma cf. westbladi has been investigated by immunohistochemistry and confocal microscopy using anti-tubulin, anti-5-HT and anti-FMRFamide antibodies. The nervous system of F. cf. apelti is composed of a large neuropile and a loose brain at the level of the statocysts with several nerve fibres surrounding them and innervating the broom organ. Sterreria spp. shows a commissural-like brain and several neurite bundles going frontad and caudad from this. At the level of the statocysts there is also a thicker aggregation of immunoreactive fibres. The nervous system of N. cf. westbladi consists of a nerve ring lying outside the body wall musculature at the level of the statocyst and a pair of ventro-lateral neurite bundles, from which extend thinner fibres innervating the ventral side of the animal. Numerous bottle-shaped glands were observed, innervated by fibres starting both from the brain and the neurite bundles. The nervous system of the nemertodermatids studied to date displays no common pattern; instead, there is considerable plasticity in the general morphology of the nervous system. In addition, the musculature of Sterreria spp. has been studied by phalloidin staining. It shows diagonal muscles in the anterior quarter of the body and a simple orthogonal grid in the posterior three quarters, being simpler than that of the other nemertodermatids. High-resolution differential interference contrast microscopy permitted to better visualize some morphological characters of the species studied, such as statocysts, sperm and glands and, in combination with anti-tubulin staining, describe in detail the broom organ in F. cf. apelti. Finally, we note an apparent absence of innervation of the gut in Nemertodermatida similar to the condition in Xenoturbella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achatz, J. G., & Martinez, P. (2012). The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Frontiers in Zoology, 9, 27–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ax, P. (1963). Relationships and phylogeny of the Turbellaria. In E. C. Dougherty (Ed.), The Lower Metazoa (pp. 191–224). Berkeley, California: University California Press.

    Google Scholar 

  • Børve, A., & Hejnol, A. (2014). Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha). Frontiers in Zoology, 11, 50–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coons, A. H., Leduc, E. H., & Conolly, J. M. (1955). Studies on antibody production I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. Journal of Experimental Medicine, 102, 49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crezée, M. (1975). Monograph of the Solenofilomorphidae (Turbellaria: Acoela). Internationale Revue der gesamten Hydrobiologie und Hydrographie, 60, 769–845.

    Article  Google Scholar 

  • Crezée, M. (1978). Paratomella rubra Rieger and Ott, an amphiatlantic acoel turbellarian. Cahiers de Biologie Marine, 19, 1–9.

    Google Scholar 

  • Dickinson, A. J. G., Nason, J., & Croll, R. P. (1999). Histochemical localization of FMRFamide, serotonin and catecholamines in embryonic Crepidula fornicata (Gastropoda, Prosobranchia). Zoomorphology, 119, 49–62.

    Article  Google Scholar 

  • Ehlers, U. (1985). Das Phylogenetische System der Plathelminthes. Stuttgart: G. Fischer.

    Google Scholar 

  • Ehlers, U. (1992). Frontal glandular and sensory structures in Nemertoderma (Nemertodermatida) and Paratomella (Acoela): ultrastructure and phylogenetic implications for the monophyly of the Euplathelminthes (Plathelminthes). Zoomorphology, 112, 227–236.

    Article  Google Scholar 

  • Faubel, A. (1976). Interstitielle Acoela (Turbellaria) aus dem Litoral der nordfriesischen Inseln Sylt und Amrum (Nordsee). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 73, 17–56.

    Google Scholar 

  • Faubel, A., & Dörjes, J. (1978). Flagellophora apelti gen. n. sp. n.: a remarkable representative of the order Nemertodermatida (Turbellaria: Archoophora). Senckenbergiana maritima, 10, 1–13.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P. (1983a). Coexistence of neuropeptides in Hydra. Neuroscience, 9(4), 837–845

  • Grimmelikhuijzen, C. J. P. (1983b). FMRFamide immunoreactivity is generally occurring in the nervous systems of coelenterates. Histochemistry, 78(3), 361–81.

  • Gröger, H., & Schmid, V. (2001). Larval development in Cnidaria: a connection to bilateria? Genesis, 29, 110–114.

    Article  PubMed  Google Scholar 

  • Harzsch, S. (2002). Neurobiologie und Evolutionsforschung: “Neurophylogenie” und die stammesgeschichte der Euarthropoda. Neuroforum, 4(2), 267–273.

    Google Scholar 

  • Hay-Schmidt, A. (1995). The larval nervous system of Polygordius lacteus Scheinder 1868 (Polygordiidae, Polychaeta): immunocytochemical data. Acta Zoologica, 76, 121–140.

    Article  Google Scholar 

  • Hejnol, A., Obst, M., Stamatakis, A., et al. (2009). Assessing the root of bilaterian animals with scalable phylogenomic methods. Proceedings of the Royal Society B, 276, 4261–4270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hessling, R. (2002). Metameric organization of the nervous system in developmental stages of Urechis caupo (Echiura) and its phylogenetic implications. Zoomorphology, 121, 221–234.

    Article  Google Scholar 

  • Hooge, M. D. (2001). Evolution of the body wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). Journal of Morphology, 249, 171–194.

    Article  CAS  PubMed  Google Scholar 

  • Jondelius, U., Ruiz-Trillo, I., Baguñà, J., & Ruitort, M. (2002). The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zoologica Scripta, 31, 201–215.

    Article  Google Scholar 

  • Jondelius, U., Wallberg, A., Hooge, M., & Raikova, O. I. (2011). How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. Systematic Biology, 60, 845–871.

    Article  PubMed  Google Scholar 

  • Karling, T. G. (1940). Zur Morphologie und Systematik der Alloeocoela Cumulata and Rhabditophora Lecithophora (Turbellaria). Acta Zoologica Fennica, 26, 1–160.

    Google Scholar 

  • Kotikova, E. A., Raikova, O. I., Reuter, M., & Gustafsson, M. K. S. (2002). The nervous and muscular systems in the free-living flatworm Castrella truncata (Rhabdocoela): an immunocytochemical and phalloidin fluorescence study. Tissue and Cell, 34, 365–374.

    Article  CAS  PubMed  Google Scholar 

  • Leiper, R. T. (1902). On an acoelous turbellarian inhabiting the common heart urchin. Nature, 66, 641.

    Google Scholar 

  • Loesel, R. (2011). Chapter 11: Neurophylogeny: retracing early metazoan brain evolution. In P. Pontarotti (Ed.), Evolutionary biology—concepts, biodiversity, macroevolution and genome evolution (pp. 169–191). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Lundin, K. (1998). Symbiotic bacteria on the epidermis of species of the Nemertodermatida (Platyhelminthes, Acoelomorpha). Acta Zoologica, 79, 187–191.

    Article  Google Scholar 

  • Lundin, K. (2000). Phylogeny of the Nemertodermatida (Acoelomorpha, Platyhelminthes). A cladistic analysis. Zoologica Scripta, 29, 65–74.

    Article  Google Scholar 

  • Lundin, K., & Hendelberg, J. (1995). Ultrastructure of the epidermis of Meara stichopi (Platyhelminthes, Nemertodermatida) and associated extra-epidermal bacteria. Hydrobiologia, 305, 161–165.

    Article  Google Scholar 

  • Meyer-Wachsmuth, I., Raikova, O. I., & Jondelius, U. (2013). The muscular system of Nemertoderma westbladi and Meara stichopi (Nemertodermatida, Acoelomorpha). Zoomorphology, 132, 239–252.

    Article  Google Scholar 

  • Meyer-Wachsmuth, I., Curini Galletti, M., & Jondelius, U. (2014). Hyper-cryptic marine meiofauna: species complexes in Nemertodermatida. PLOS One, 9(9), 1–25.

    Article  Google Scholar 

  • Meyer-Wachsmuth, I., Jondelius, U. (2015). Interrelationships of Nemertodermatida. Organisms Diversity and Evolution, this issue.

  • Müller, M. C. M., & Sterrer, W. (2004). Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida) shown by phalloidin labelling, immunohistochemistry, and cLSM, and their phylogenetic significance. Zoomorphology, 123, 169–177.

    Google Scholar 

  • Müller, M. C. M., & Westheide, W. (2000). Structure of the nervous system of Myzostoma cirriferum (Annelida) as revealed by immunohistochemistry and cLSM analyses. Journal of Morphology, 245, 87–98.

    Article  PubMed  Google Scholar 

  • Müller, M. C. M., & Westheide, W. (2002). Comparative analysis of the nervous systems in presumptive progenetic dinophilid and dorvilleid polychaetes (Annelida) by immunohistochemistry and cLSM. Acta Zoologica, 83, 33–48.

    Article  Google Scholar 

  • Nezlin, L. P., & Yushin, V. V. (2004). Structure of the nervous system in the tornaria larva of Balanoglossus proterogonius (Hemichordata: Enteropneusta) and its phylogenetic implications. Zoomorphology, 123, 1–13.

    Article  Google Scholar 

  • Paps, J., Baguña, J., & Riutort, M. (2009). Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Molecular Biology and Evolution, 26(10), 2397–2406.

    Article  CAS  PubMed  Google Scholar 

  • Perea-Atienza, E., GavilaÏn, B., Chiodin, M., Abril, J. F., Hoff, K. J., Poustk, A. J., & Martinez, P. (2015). The nervous system of Xenacoelomorpha: a genomic perspective. Journal of Experimental Biology, 218, 618–628.

    Article  PubMed  Google Scholar 

  • Philippe, H., Brinkmann, H., Copley, R. R., et al. (2011). Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature, 470, 255–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raikova, O. I., Reuter, M., Kotikova, E. A., & Gustafsson, M. K. S. (1998). A commissural brain! The pattern of 5-HT immunoreactivity in Acoela (Plathelminthes). Zoomorphology, 118, 69–77.

    Article  Google Scholar 

  • Raikova, O. I., Reuter, M., Jondelius, U., Gustafsson, M. K. S. (2000a). The brain of Nemertodermatida as revealed by anti-5-HT and anti-FMRFamide immunostainings. Tissue and Cell, 32, 358–365.

  • Raikova, O.I., Reuter, M., Jondelius, U., Gustafsson, M. K. S. (2000b). An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed). Zoomorphology, 120, 107–118.

  • Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maule, A. G., Halton, D. W., Jondelius, U. (2004a). Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology, 107, 75–86.

  • Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maule, A. G., Halton, D. W. (2004b). Evolution of the nervous system in Paraphanostoma (Acoela). Zoologica Scripta, 33, 71–88.

  • Raikova, O. I. (2004c). Neuroanatomy of basal bilaterians (Xenoturbellida, Nemertodermatida, Acoela) and its phylogenetic implications (PhD thesis). Åbo, Finland: Åbo Akademi University.

  • Reisinger, E. (1925). Untersuchungen am Nervensystem der Bothrioplana semperi Braun. (Zugleich ein Beitrag zur Technik der vitalen Nervenfaerbung und zur vergleichenden Anatomie des Plathelminthennervensystems.). Zeitschrift für Morphologie und Ökologie der Tiere, 5, 119–149.

  • Richter, S., Loesel, R., Purschke, G., Schmidt-Rhaesa, A., et al. (2010). Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Frontiers in Zoology, 7, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reuter, M., & Halton, D. W. (2001). Comparative neurobiology of Platyhelminthes. In D. T. J. Littlewood & R. A. Bray (Eds.), Interrelationships of the Platyhelminthes (pp. 239–249). London: Taylor & Francis.

    Google Scholar 

  • Reuter, M., Raikova, O. I., Gustafsson, M. K. S. (2001a). Patterns in the nervous and muscle systems in lower flatworms. Belgian Journal of Zoology, 31, 47–53.

  • Reuter, M., Raikova O. I., Jondelius, U., Gustafsson, M. K. S., Maule A. G., Halton, D. W. (2001b). Organisation of the nervous system in the Acoela: an immunocytochemical study. Tissue and Cell, 33(2), 119–128.

  • Riser, N. W. (1987). Nemertinoides elongatus gen. n., sp. n. (Turbellaria: Nemertodermatida) from coarse sand beaches of the western north Atlantic. Proceedings of the Helminthological Society of Washington, 54, 60–67.

  • Ruppert, E. E. (1978). A review of metamorphosis of turbellarian larvae. In F.-S. Chia & M. E. Rice (Eds.), Settlement and metamorphosis of marine invertebrate larvae (pp. 65–81). New York: Elsevier.

    Google Scholar 

  • Schmidt-Rhaesa, A. (2007). The evolution of organ systems. Oxford, New York: Oxford University Press.

    Book  Google Scholar 

  • Smith, J. P. S., & Tyler, S. (1985). The acoel turbellarians: kingpins of metazoan evolution or a specialized offshoot? In C. Conway-Morris, J. D. George, R. Gibson, & H. M. Platt (Eds.), The origins and relationships of lower invertebrates (pp. 123–142). Oxford University Press: Oxford.

    Google Scholar 

  • Srivastava, M., Mazza-Curll, K. L., van Wolfswinkel, J. C., & Reddien, P. W. (2014). Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Current Biology, 24, 1107–1113.

    Article  CAS  PubMed  Google Scholar 

  • Steinböck, O. (1930). Ergebnisse einer von E. Reisinger & O. Steinböck mit Hilfe des Rask-Ørsted Fonds durchgeführten Reise in Grönland 1926. 2. Nemertoderma bathycola nov. gen. nov. spec. Videnskabelige Meddelelser Dansk Naturhistorisk Forening, 90, 47–84.

    Google Scholar 

  • Steinböck, O. (1932). Die Turbellarian des arktischen Gebietes. In F. Römer & F. Schaudinn (Eds.), Fauna Arctica (Band 6 (pp. 297–342). Jena: Gustav Fischer.

    Google Scholar 

  • Steinböck, O. (1938). Über die Stellung der Gattung Nemertoderma Steinböck im System der Turbellarien. Acta Societatis pro Fauna et Flora Fennica, 62, 1–28.

    Google Scholar 

  • Steinböck, O. (1966). Die Hofsteniiden (Turbellaria acoela): Grundsättzliches zur Evolution der Turbellarien. Zeitschrift für zoologische Systematik und Evolutionsforschung, 4, 58–195.

    Article  Google Scholar 

  • Stefanini, M., De Martino, C., & Zamboni, L. (1967). Fixation of ejaculated spermatozoa for electron microscopy. Nature, 216, 172–174.

    Article  Google Scholar 

  • Sterrer, W. (1970). In R. Riedl (Ed.), Fauna und Flora der Adria. Ein systematischer Meeresführer für Biologen und Naturfreunde. Hamburg, Berlin: Verlag Paul Parey.

    Google Scholar 

  • Sterrer, W. (1998). New and known Nemertodermatida (Platyhelminthes-Acoelomorpha)—a revision. Belgian Journal of Zoology, 128, 55–92.

    Google Scholar 

  • Todt, C. (2009). Structure and evolution of the pharynx simplex in acoel flatworms (Acoela). Journal of Morphology, 270, 271–290.

    Article  PubMed  Google Scholar 

  • Tyler, S. (1986). Ultrastructure of a remarkable food-gathering organ in Flagellophora sp. (Turbellaria, Nemertodermatida). Transactions of the American Microscopical Society, 105, 90A.

    Google Scholar 

  • Tyler, S., & Hooge, M. (2004). Comparative morphology of the body wall in flatworms (Platyhelminthes). Canadian Journal of Zoology, 82, 194–210.

    Article  Google Scholar 

  • Voronezhskaya, E. E., Tyurin, S. A., & Nezlin, L. P. (2002). Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). Journal of Comparative Neurolology, 444, 25–38.

    Article  Google Scholar 

  • Voronezhskaya, E. E., Tsitrin, E. B., & Nezlin, L. P. (2003). Neuronal development in the larval polychaete Phyllodoce maculata (Phyllodocidae). Journal of Comparative Neurolology, 455, 299–309.

    Article  Google Scholar 

  • Wallberg, A., Curini-Galetti, M., Ahmadzadeh, A., & Jondelius, U. (2007). Dismissal of Acoelomorpha: Acoela and Nemertodermatida are separate early bilaterian clades. Zoologica Scripta, 36, 509–523.

    Article  Google Scholar 

  • Wanninger, A., & Haszprunar, G. (2003). The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology, 122, 77–85.

    Google Scholar 

  • Westblad, E. (1937). Die Turbellarien-Gattung Nemertoderma Steinböck. Acta Societatis pro Fauna et Flora Fennica, 60, 45–89.

    Google Scholar 

  • Westblad, E. (1940). Studien über skandinavische Turbellaria Acoela I. Arkiv för Zoologi, 32A(20), 1–82.

    Google Scholar 

  • Westblad, E. (1945). Studien über skandinavische Turbellaria Acoela III. Arkiv för Zoologi, 36A(5), 1–56.

    Google Scholar 

  • Westblad, E. (1946). Studien über skandinavische Turbellaria Acoela IV. Arkiv för Zoologi, 38A(1), 1–56.

    Google Scholar 

  • Westblad, E. (1948). Studien über skandinavische Turbellaria Acoela V. Arkiv för Zoologi, 41(7), 1–83.

    Google Scholar 

  • Westblad, E. (1949a). Xenoturbella bocki n.g., n.sp., a peculiar, primitive turbellarian type. Arkiv för Zoologi, 1, 3–29.

    Google Scholar 

  • Westblad, E. (1949b). On Meara stichopi (Bock) Westblad, a new representative of Turbellaria Archoophora. Arkiv för Zoologi, 1(5), 43–57.

    Google Scholar 

Download references

Acknowledgments

Thanks are extended to the staff of Sven Lovén Centre for Marine Sciences (Sweden), the CCMAR in Faro (Portugal) and the Biologische Anstalt Helgoland (Germany) for their help with collecting the material. We are deeply grateful to Professor Marco Curini-Galletti, to Professor Mark Martindale and to Professor Philippe Bouchet for organizing sampling in Italy, at Hawai’i and in Papua New Guinea, respectively. Collections in Papua New Guinea took place during the Our Planet Reviewed Papua Niugini Expedition in November–December 2012, organized by the Muséum National d’Histoire Naturelle (MNHN), Pro Natura International, the Institut de Recherche pour le Développement (IRD) and the University of Papua New Guinea. The principal investigators of this expedition were Philippe Bouchet, Sarah Samadi (MNHN) and Claude Payri (IRD), and funding was provided by the Total Foundation, Prince Albert II of Monaco Foundation, Fondation EDF, Stavros Niarchos Foundation and Entrepose Contracting, with support from the Divine Word University and operated under a permit delivered by the Papua New Guinea Department of Environment and Conservation. The confocal microscopic observations were carried out at the newly equipped Research Resource Centre “Molecular and Cellular Technologies” at St.-Petersburg State University (Russia). We wish to express our gratitude to the most helpful staff of the Centre, in particular to Nikolai A. Kostin, specialist in confocal microscopy. Financial support was received from the Zoological Institute RAS project 0120135194 and the Russian Basic Research Foundation grant 13-04-02002 to Olga Raikova, the Swedish Research Council through a grant to Ulf Jondelius (grant numbers 2009-5147 and 2012-3913), the Föreningen Riksmusei Vänner (stipend 2011), Stiftelsen Lars Hiertas Minne grant FO2011-0248 and the Royal Swedish Academy of Sciences grant FOA11H-352 to Inga Meyer-Wachsmuth, and from the European Community through an ASSEMBLE grant (agreement no 227799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga I. Raikova.

Additional information

Olga I. Raikova and Inga Meyer-Wachsmuth contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raikova, O.I., Meyer-Wachsmuth, I. & Jondelius, U. The plastic nervous system of Nemertodermatida. Org Divers Evol 16, 85–104 (2016). https://doi.org/10.1007/s13127-015-0248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0248-0

Keywords

Navigation