Skip to main content
Log in

Effects of lovastin, fosmidomycin and methyl jasmonate on andrographolide biosynthesis in the Andrographis paniculata

  • Original article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Andrographolide is a diterpene secondary metabolite product of Andrographis paniculata. It has been known to be a pharmaceutically important compound synthesized via the cytosolic mevalonate (MVA) and the plastidial 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. To understand the biosynthetic pathway of andrographolide biosynthesis in Andrographis paniculata, lovastatin, fosmidomycin and methyl jasmonate (MeJA) were used to inhibit the key enzymes 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), and 1-deoxy-d-xylulose-5-phosphate reducto-isomerase (DXR) involved in the synthesis of andrographolide in the MVA and MEP pathways, respectively. The inhibition of andrographolide accumulation was linked with the expression level of the studied regulatory genes, 3-hydroxy-3-methyl glutaryl coenzyme A synthase (hmgs), 3-hydroxy-3-methyl glutaryl coenzyme A reductase (hmgr), 1-deoxyxylulose-5-phosphate synthase (dxs), 1-deoxyxylulose-5-phosphate reductoisomerase (dxr), 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (hds),1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (hdr), 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase(isph), isopentenyl diphosphate isomerase (ipp), geranylgeranyl diphosphatesynthase (ggps) of the MVA and MEP pathways. The pathways associated transcript expression level, and andrographolide biosynthesis was significantly modulated by the inhibitors indicating that the andrographolide biosynthesis is strongly responsive at the transcriptional level. The results demonstrated that both pathways can contribute to the biosynthesis of andrographolide in A. paniculata. Both hmgr and dxr played a critical role consistent with some crossover between MVA and MEP pathways in andrographolide biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DMAPP:

Dimethylallyl diphosphate

DXP:

1-Deoxy-d-xylulose-5-phosphate

dxr:

1-Deoxyxylulose-5-phosphate reductoisomerase

dxs:

1-Deoxyxylulose-5-phosphate synthase

GAP:

Glyceraldehyde-3-phosphate

GGPP:

Geranyl geranyl diphosphate

ggps:

Geranylgeranyl diphosphate synthase

hds:

1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase

hdr:

1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase

E HMBPP:

(E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate

hmgr:

3-Hydroxy-3-methyl glutaryl coenzyme A reductase

hmgs:

3-Hydroxy-3-methyl glutaryl coenzyme A synthase

Ipp:

Isopentenyl diphosphate

Isph:

1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase

MEP:

2-C-methyl-d-erythritol-4-phosphate

MVA:

Mevalonic acid

References

  • Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77:3957–3961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochar DA, Stauffacher CV, Rodwell VW (1999) Investigation of the conserved lysines of Syrian hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochemistry 38:15848–15852

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran CV, Thiyagarajan P, Deepak HB, Agarwal A (2011) In vitro modulation of LPS/calcimycin induced inflammatory and allergic mediators by pure compounds of Andrographis paniculata (King of bitters) extract. Int Immunopharmacol 11:79–84

    Article  CAS  PubMed  Google Scholar 

  • Cherukupalli N, Divate M, Mittapelli SR, Khareedu VR, Vudem DR (2016) De novo assembly of leaf transcriptome in the medicinal plant Andrographis paniculata. Front Plant Sci 7:1203–1215

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung HY, Cheung SH, Li J, Cheung CS, Lai WP, Fong WF, Leung FM (2005) Andrographolide isolated from Andrographis paniculata induces cell cycle arrest and mitochondrial-mediated apoptosis in human leukemic HL-60 cells. Planta Med 71:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–84

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Smith MAL, Pepin MF (1999) Effects of exogenous methyl jasmonate in elicited anthocyanin producing cell cultures of ohelo (Vaccinium pahalae). In Vitro Cell Dev Biol Plant 35:106–113

    Article  CAS  Google Scholar 

  • Han X, Hu Y, Zhang G, Jiang Y, Chen Z, Yu D (2018) Jasmonate negatively regulates stomatal development in Arabidopsis cotyledons. Plant Physiol. https://doi.org/10.1104/pp.17.00444

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawari AH, Mohamed-Hussein ZA (2010) Simulation of a Petri net-based model of the terpenoid biosynthesis pathway. BMC Bioinform 11:83

    Article  CAS  Google Scholar 

  • Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Luttgen H, Sagner S, Fellermeier M, Eisenreich W, Zenk MH, Bacher A, Rohdich F (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate to 2C-methyl-d-erythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci USA 97:2486–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeffler JF, Hemmerlin A, Grosdemange-Billiard C, Bach TJ, Rohmer M (2002) Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem J 366:573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu FX, Zhong JJ (2008) Jasmonic acid mediates gene transcription of ginsenoside biosynthesis in cell cultures of Panax notoginseng treated with chemically synthesized 2-hydroxyethyl jasmonate. Process Biochem 43:113–118

    Article  CAS  Google Scholar 

  • Jiang Y, Ye J, Li S, Niinemets U (2017) Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: a high-resolution analysis of dose dependence. J Exp Bot 68:4679–4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama T, Ogura K (1999) Isopentenyl diphosphate isomerase and prenyltransferases. In: Cane DE (eds) Comprehensive natural product chemistry: isoprenoids including carotenoids and steroids, vol 2. Pergamon Press, Oxford, pp 69–96

    Chapter  Google Scholar 

  • Kuzuyama T, Shimizu T, Seto H (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:2100–2104

    Article  Google Scholar 

  • Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Tseng CK, Young KC, Sun HY, Wang SW, Chen WC, Lin CK, Wu YH (2014) Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells. Br J Pharmacol 171:237–252

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Bio 50:47–65

    Article  CAS  Google Scholar 

  • Mueller C, Schwender J, Zeidler J, Lichtenthaler HK (2000) Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis. Biochem Soc Trans 28:792–793

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Perez-Gil J, Rodriguez-Concepcion M (2013) Metabolic plasticity for isoprenoid biosynthesis in bacteria. Biochem J 452:19–25

    Article  CAS  PubMed  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  • Sareer O, Ahmad S, Umar S (2014) Andrographis paniculata: a critical appraisal of extraction., isolation and quantification of andrographolide and other active constituents. Nat Prod Res 28:2081–2101

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schwarz M, Arigoni D (1999) Ginkgolide biosynthesis. In: Cane D (ed) Comprehensive natural product chemistry, vol 2. Pergamon, Oxford, pp 367–399

    Chapter  Google Scholar 

  • Sharma SN, Sinha RK, Sharma D, Jha Z (2009) Assessment of intra-specific variability at morphological, molecular and biochemical level of Andrographis paniculata (Kalmegh). Curr Sci 96:402–408

    Google Scholar 

  • Sharma SN, Jha Z, Sinha RK (2013) Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata. Nat Prod Commun 8:1045–1047

    CAS  PubMed  Google Scholar 

  • Sharma SN, Jha Z, Sinha RK, Geda AK (2015) Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata. Physiol Plant 153:221–229

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Gara RK, Bhardwaj PK, Kaachra A, Malik S, Kumar R, Sharma M, Ahuja PS, Kumar S (2010) Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma Royle. Johnston]. BMC Mol Biol 11:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava N, Akhila A (2010) Biosynthesis of andrographolide in Andrographis paniculata. Phytochem 71:1298–1304

    Article  CAS  Google Scholar 

  • Suebsasana S, Pongnaratorn P, Sattayasai J, Arkaravichien T, Tiamkao S,.Aromdee C (2009) Analgesic, antipyretic, anti-inflammatory and toxic effects of andrographolide derivatives in experimental animals. Arch Pharm Res 32:1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Liu Y, Wang B, Gu G, Yang L, Zheng Y, Qian H, Huang W (2012) Synthesis and biological evaluation of andrographolide derivatives as potent anti-HIV agents. Arch Pharm Weinh 345:647–656

    Article  CAS  Google Scholar 

  • Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book Am Soc Plant Biol 9:e0143

    Article  Google Scholar 

  • Vakil MM, Mendhulkar V (2013) Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata Burm. f. Nees. Bot Stud 54:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valdiani A, Talei D, Tan SG, Abdul Kadir M, Maziah M, Rafii MY, Sagineedu SR (2014) A classical genetic solution to enhance the biosynthesis of anticancer phytochemicals in Andrographis paniculata Nees. PloS One 9:e87034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Fits L, Memelink J (2000) ORCA3, a jasmonate responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Vranova E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  CAS  PubMed  Google Scholar 

  • Wen L, Xia N, Chen X, Li Y, Hong Y, Liu Y, Wang Z, Liu Y (2014) Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt. Eur J Pharmacol 740:421–427

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotech 24:1441–1447

    Article  CAS  Google Scholar 

  • Xu J, Li Z, Cao M, Zhang H, Sun J, Zhao J, Zhou Q, Wu Z, Yang L (2012) Synergetic effect of Andrographis paniculata polysaccharide on diabetic nephropathy with andrographolide. Int J Biol Macromol 51:738–742

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K (2004) Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C] glucose. Plant Physiol 134:161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Du X, Liang X, Han R, Liang Z, Liu Y, Liu F, Zhao J (2012) Different roles of the mevalonate and methylerythritol phosphate pathways in cell growth and tanshinone production of Salvia miltiorrhiza hairy roots. PloS one 7:e46797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support from Indira Gandhi Krishi Vishwavidyalaya (IGKV), Raipur is gratefully acknowledged. Thanks to Dr. D.K. Sharma, Former Head, Department of Plant Molecular Biology and Biotechnology for arranging funds and facilities. We thank Jordan Pepper for providing an English proof read.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Sinha.

Additional information

Communicated by J. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R.K., Sharma, S.N., Verma, S.S. et al. Effects of lovastin, fosmidomycin and methyl jasmonate on andrographolide biosynthesis in the Andrographis paniculata. Acta Physiol Plant 40, 165 (2018). https://doi.org/10.1007/s11738-018-2746-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2746-0

Keywords

Navigation