Skip to main content
Log in

Experimental Study and Thermodynamic Modeling of B-Fe-W System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The present study investigates experimentally phase equilibria relations in the B-Fe-W ternary system. For the experimental study, B-Fe-W alloys were produced by arc-melting. These alloys were equilibrated using long-term annealing for 2000 h and 4224 h at temperatures of 1050 and 677 °C, respectively. The alloys were characterized by scanning electron microscopy coupled with energy dispersive x-ray spectroscopy, x-ray powder diffraction analysis, and differential scanning calorimetry. Based on the experimental results, the B-Fe-W system was modeled using the CALPHAD method. Herein, boron was modeled interstitially in the solid solutions of iron and tungsten. Also, in this study, the volume phase fractions for selected B-Fe-W alloys were determined using an image analysis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Li, J. Li, C. Li, and Y. Liu, Reactive Synthesis of FeWB Powders and Preparation of Bulk Materials, Int. J. Refract. Hard Met., 2014, 46, p 80–83.

    Article  Google Scholar 

  2. M. Kulka, N. Makuch, and A. Piasecki, Nanomechanical Characterization and Fracture Toughness of FeB and Fe2B Iron Borides Produced by Gas Boriding of Armco Iron, Surf. Coat. Technol., 2017, 325, p 515–532.

    Article  Google Scholar 

  3. C. Li, J. Li, and Y. Liu, Phase Evolution of Fe–W–B Powders and Stability of FeWB Ternary Boride Prepared by Reactive Synthesis, Mater. Res. Express, 2018, 5(1), p 016517.

    Article  ADS  Google Scholar 

  4. P. Rogl, Boron – Iron – Tungsten, in Ternary Alloy Systems Phase Diagrams, Crystallographic and Thermodynamic Data, Iron Systems, Part 1. G. Effenberg, and S. Ilyenko, Eds., Springer, Berlin, Heidelberg, 2008, p 455–463

  5. C. Subramanian, A.K. Suri, and T.S.R. Ch Murthy, Development of Boron-Based Materials for Nuclear Applications, BARC Newsl., 2010, 313, p 14–22.

    Google Scholar 

  6. G. Meschut, M. Matzke, R. Hoerhold, and T. Olfermann, Hybrid Technologies for Joining Ultra-High-Strength Boron Steels with Aluminum Alloys for Lightweight Car Body Structures, Proc. CIRP, 2014, 23, p 19–23.

    Article  Google Scholar 

  7. M. Rieth, S. Dudarev, S. Gonzalez de Vicente, J. Aktaa, T. Ahlgren, S. Antusch, D. Armstrong, M. Balden, N. Baluc, M. Barthe, W. Basuki, M. Battabyal, C. Becquart, D. Blagoeva, H. Boldyryeva, J. Brinkmann, M. Celino, L. Ciupinski, J. Correia, A. De Backer, C. Domain, E. Gaganidze, C. García-Rosales, J. Gibson, M. Gilbert, S. Giusepponi, B. Gludovatz, H. Greuner, K. Heinola, T. Höschen, A. Hoffmann, N. Holstein, F. Koch, W. Krauss, H. Li, S. Lindig, J. Linke, C. Linsmeier, P. López-Ruiz, H. Maier, J. Matejicek, T. Mishra, M. Muhammed, A. Muñoz, M. Muzyk, K. Nordlund, D. Nguyen-Manh, J. Opschoor, N. Ordás, T. Palacios, G. Pintsuk, R. Pippan, J. Reiser, J. Riesch, S. Roberts, L. Romaner, M. Rosiński, M. Sanchez, W. Schulmeyer, H. Traxler, A. Ureña, J. van der Laan, L. Veleva, S. Wahlberg, M. Walter, T. Weber, T. Weitkamp, S. Wurster, M. Yar, J. You, and A. Zivelonghi, Recent Progress in Research on Tungsten Materials for Nuclear Fusion Applications in Europe, J. Nucl. Mater., 2013, 432(1–3), p 482–500.

    Article  ADS  Google Scholar 

  8. A. Vishina, O. Vekilova, T. Björkman, A. Bergman, H. Herper, and O. Eriksson, High-Throughput and Data-Mining Approach to Predict New Rare-Earth Free Permanent Magnets, Phys. Rev. B, 2020, 101(9), p 094407.

    Article  ADS  Google Scholar 

  9. J. Marshall, D. Walker, and P. Thomas, HRXRD Study of the Theoretical Densities of Novel Reactive Sintered Boride Candidate Neutron Shielding Materials, Nucl. Mater. Energy, 2020, 22, p 100732.

    Article  Google Scholar 

  10. H. Haschke, H. Nowotny, and F. Benesovsky, Untersuchungen in den Dreistoffen: {Mo, W}−{Fe Co, Ni}−B, Monatsh. Chem., 1966, 97, p 1459–1468.

    Article  Google Scholar 

  11. A. Leithe-Jasper, H. Klesnar, P. Rogl, M. Komai, and K. Takagi, Reinvestigation of Isothermal Sections in M(M=Mo, W)-Fe-B Ternary Systems at 1323 K, J JPN I MET., 2000, 64(2), p 154–162.

    Article  Google Scholar 

  12. X. OuYang, F. Yin, J. Hu, M. Zhao, Y. Liu, and F. Li, Experimental Investigation and Thermodynamic Calculation of the B–Fe–W Ternary System, Calphad, 2018, 63, p 212–219.

    Article  Google Scholar 

  13. T. Van Rompaey, K.H. Kumar, and P. Wollants, Thermodynamic Optimization of the B–Fe System, J. Alloys Compd., 2002, 334(1–2), p 173–181.

    Article  Google Scholar 

  14. M.-A. Van Ende, and I.-H. Jung, Critical Thermodynamic Evaluation and Optimization of the Fe–B, Fe–Nd, B-Nd and Nd–Fe–B Systems, J. Alloys Compd., 2013, 548, p 133–154.

    Article  Google Scholar 

  15. Z. Abdellah, R. Chegroune, M. Keddam, B. Bouarour, L. Haddour, and A. Elias, The Phase Stability in the Fe–B Binary System: Comparison Between the Interstitial and Substitutional Models, Defect Diffus. Forum, 2012, 322, p 1–9.

    Article  Google Scholar 

  16. M. Palumbo, and L. Battezzati, Thermodynamics and Kinetics of Metallic Amorphous Phases in the Framework of the CALPHAD Approach, Calphad, 2008, 32(2), p 295–314.

    Article  Google Scholar 

  17. M. Szymanski, V. Homolová, and M. Leonowicz, Thermodynamic Assessment of the Fe–B System in the Ssol5 and User Databases, Int. J. Eng. Res. Appl., 2017, 07(01), p 59–62.

    Google Scholar 

  18. B. Hallemans, P. Wollants, and J.R. Roos, Thermodynamic Reassessment and Calculation of the Fe–B Phase Diagram, Z. Metallkd., 1994, 85, p 676–682.

    Google Scholar 

  19. P.K. Liao, and K.E. Spear, B-Fe, in Binary alloy phase diagrams Volume 1, 1st ed., T.B. Massalski and H. Okamoto, P.R. Subramanian, L. Kacprzak, Eds., (ASM International, 1986), pp. 351–356

  20. O.K. von Goldbeck, Iron—Boron Fe—B, IRON—Binary Phase Diagrams, 1st ed., Springer, Berlin, Heidelberg, pp. 15–18

  21. P. Franke, and D. Neuschütz, B – Fe (Boron – Iron), in Thermodynamic Properties of Inorganic Meterials Binary systems. Part 2: Elements and Binary Systems from B – C to Cr – Zr: Phase Diagrams, Phase Transition Data, Integral and Partial Quantities of Alloys, 1st ed., P. Franke, D. Neuschütz, Eds., Springer, Berlin, Heidelberg, 2004

  22. P. Villars, Pearson’s Handbook: Crystallographic Data for Intermetallic Phases. ASM International, Ohio, 1997.

    Google Scholar 

  23. P. Franke, D. Neuschütz, B – W (Boron – Tungsten), in Thermodynamic Properties of Inorganic Materials Binary systems. Part 2: Elements and Binary Systems from B – C to Cr – Zr: Phase Diagrams, Phase Transition Data, Integral and Partial Quantities of Alloys, 1st ed., P. Franke, D. Neuschütz, Eds., Springer, Berlin, Heidelberg, 2004

  24. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation, APL Mater., 2013, 1(1), p 011002.

    Article  ADS  Google Scholar 

  25. P. Gustafson, A Thermodynamic Evaluation of the C–Fe–W System, Metall. Trans. A, 1987, 18(3), p 175–188.

    Article  Google Scholar 

  26. J. Andersson, and P. Gustafson, A Thermodynamic Evaluation of the Iron-Tungsten System, Calphad, 1983, 7(4), p 317–326.

    Article  Google Scholar 

  27. S.V. Nagender Naidu, A.M. Sriramamurthy, P. Rama Rao, Fe-W (Iron – Tumngsten), in Binary Alloy Phase Diagrams Volume 2, T.B. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak, Eds., 2nd ed., ASM International, 1990, pp. 1123–1125

  28. A. Antoni-Zdziobek, T. Commeau, and J.-M. Joubert, Partial Redetermination of the Fe-W Phase Diagram, Metall. Mater. Trans., 2013, 44(7), p 2996–3003.

    Article  Google Scholar 

  29. A. Jacob, C. Schmetterer, L. Singheiser, A. Gray-Weale, B. Hallstedt, and A. Watson, Modeling of Fe–W Phase Diagram Using First Principles and Phonons Calculations, Calphad, 2015, 50, p 92–104.

    Article  Google Scholar 

  30. A. Kroupa, STEEL16 Database, 2010

  31. H. Duschanek, and P. Rogl, Critical Assessment and Thermodynamic Calculation of the Binary System Boron–Tungsten (B–W), J. Phase Equilib., 1995, 16, p 150–161.

    Article  Google Scholar 

  32. P. Rogl, B-W-C, in Phase diagrams of ternary metal-boron-carbon systems, 1st ed., G. Effenberg, Eds., (ASM International, Ohio, 1998), pp. 372–427

  33. V. Raghavan, B–Fe–W (Boron–Iron–Tungsten), J. Phase Equilib, 2003, 24, p 457–458.

    Article  Google Scholar 

  34. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A.C. Fiji, An Open-Source Platform for Biological-Image Analysis, Nat. Methods, 2012, 9(7), p 676–682.

    Article  Google Scholar 

  35. G. Bergerhoff, and I.D. Brown, Crystallographic Databases, F.H. Allen et al. (Hrsg.), Eds., International Union of Crystallography, (1987)

  36. A. Kroupa, Modelling of Phase Diagrams and Thermodynamic Properties Using Calphad Method—Development of Thermodynamic Databases, Comput. Mater. Sci., 2013, 66, p 3–13.

    Article  Google Scholar 

  37. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc and DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26, p 273–312.

    Article  Google Scholar 

  38. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317–425.

    Article  Google Scholar 

  39. N. Saunders, and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, 1st Ed., (Elsevier, Amsterdam 1998), p 96

  40. M. Hillert, and L.-I. Staffansson, Regular-Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand., 1970, 24(10), p 3618–3626.

    Article  Google Scholar 

  41. M. Hillert, and M. Jarl, A Model for Alloying in Ferromagnetic Metals, Calphad, 1978, 2(3), p 227–238.

    Article  Google Scholar 

  42. K. Frisk, A Thermodynamic Evaluation of the Cr-Fe-N System, Metall. Trans. A, 1990, 21(9), p 2477–2488.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Slovak Grant Agency VEGA under the project No. 2/0038/21

and project No. 2/0073/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viera Homolová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirkovska, I., Homolová, V., Zobač, O. et al. Experimental Study and Thermodynamic Modeling of B-Fe-W System. J. Phase Equilib. Diffus. 42, 499–514 (2021). https://doi.org/10.1007/s11669-021-00912-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00912-x

Keywords

Navigation