Skip to main content
Log in

Suspension Spraying Tip: High Molecular Weight Solvent

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In suspension spraying, two most frequently used solvents are water and ethanol. In this study, we test the potential of using alternative, high molecular weight solvent and demonstrate the associated advantages. For that, two organic solvents are directly compared: ethanol (serving as a benchmark, suspension formulated at 10 wt.% solid load) and di-propylene glycol methyl ether (two suspensions at 10 wt.% and 20 wt.% solid load). As a model material, \(\hbox {Al}_{2}\hbox {O}_3\) is selected, a frequently sprayed ceramics employed in many industrial sectors. Sub-micron 100% alpha-alumina powder is used to formulate the suspensions. Identical spray conditions are then used to deposit the coatings using hybrid water-stabilized plasma torch. Shadowgraphy monitoring of the suspension fragmentation as well as in situ measurement of the particle in-flight properties is employed, showing no significant differences between the three series. Further, it is shown that the ethanol- and ether-based-feedstock coatings are fully comparable in terms of their microstructure, porosity content, surface roughness as well as hardness and adhesion to the substrates. Importantly, the ether-based coatings exhibit slightly higher levels of \(\alpha\)-\(\hbox {Al}_{2}\hbox {O}_3\) phase when compared to their ethanol-based counterpart (17 wt.% vs. 6 wt.%). The use of 20 wt.% solid load in the ether solvent leads to twofold increase in the deposition rate while (as opposed to ethanol) successfully retaining a dense microstructure. Lastly, the ether is significantly cheaper and safer to handle than ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Fauchais, A. Joulia, S. Goutier, C. Chazelas, M. Vardelle, A. Vardelle, Suspension and solution plasma spraying. J. Phys. D: Appl. Phys. 46(22), 224015 (2013)

    Article  Google Scholar 

  2. F.L. Toma, A. Potthoff, L.M. Berger, C. Leyens, Demands, potentials, and economic aspects of thermal spraying with suspensions: a critical review. J. Therm. Spray Technol. 24(7), 1143–1152 (2015)

    Article  Google Scholar 

  3. M. Aghasibeig, F. Tarasi, R.S. Lima, A. Dolatabadi, C. Moreau, A review on suspension thermal spray patented technology evolution. J. Therm. Spray Technol. 28(7), 1579–1605 (2019)

    Article  Google Scholar 

  4. P. Fauchais, M. Vardelle, A. Vardelle, S. Goutier, What do we know, what are the current limitations of suspension plasma spraying? J. Therm. Spray Technol. 24(7), 1120–1129 (2015)

    Article  Google Scholar 

  5. E. Medvedovski, Wear-resistant alumina ceramics. InterCeram Int. Ceram. Rev. 49, 106–113 (2000)

    CAS  Google Scholar 

  6. E. Medvedovski, Wear-resistant engineering ceramics. Wear 249(9), 821–828 (2001)

    Article  CAS  Google Scholar 

  7. J. Medricky, F. Lukac, S. Csaki, S. Houdkova, M. Barbosa, T. Tesar, J. Cizek, R. Musalek, O. Kovarik, T. Chraska, Improvement of mechanical properties of plasma sprayed Al2O3-ZrO2-SiO2 amorphous coatings by surface crystallization. Materials 12(19), 3232 (2019)

    Article  CAS  Google Scholar 

  8. T. Tesar, R. Musalek, F. Lukac, J. Medricky, J. Cizek, V. Rimal, S. Joshi, T. Chraska, Increasing alpha-phase content of alumina-chromia coatings deposited by suspension plasma spraying using hybrid and intermixed concepts. Surf. Coat. Technol. 371, 298–311 (2019)

    Article  CAS  Google Scholar 

  9. R. Musalek, J. Matejicek, M. Vilemova, O. Kovarik, Non-linear mechanical behavior of plasma sprayed alumina under mechanical and thermal loading. J. Therm. Spray Technol. 19(1–2), 422–428 (2010)

    Article  CAS  Google Scholar 

  10. T. Tesar, R. Musalek, J. Medricky, J. Kotlan, F. Lukac, Z. Pala, P. Ctibor, T. Chraska, S. Houdkova, V. Rimal, N. Curry, Development of suspension plasma sprayed alumina coatings with high enthalpy plasma torch. Surf. Coat. Technol. 325, 277–288 (2017)

    Article  CAS  Google Scholar 

  11. O. Tingaud, A. Grimaud, A. Denoirjean, G. Montavon, V. Rat, J.F. Coudert, P. Fauchais, T. Chartier, Suspension plasma-sprayed alumina coating structures: operating parameters versus coating architecture. J. Therm. Spray Technol. 17(5–6), 662–670 (2008)

    Article  CAS  Google Scholar 

  12. S. Goel, S. Bjorklund, N. Curry, U. Wiklund, S.V. Joshi, Axial suspension plasma spraying of Al2O3 coatings for superior tribological properties. Surf. Coat. Technol. 315, 80–87 (2017)

    Article  CAS  Google Scholar 

  13. R. Rampon, O. Marchand, C. Filiatre, G. Bertrand, Influence of suspension characteristics on coatings microstructure obtained by suspension plasma spraying. Surf. Coat. Technol. 202(18), 4337–4342 (2008)

    Article  CAS  Google Scholar 

  14. P. Sokolowski, S. Kozerski, L. Pawlowski, A. Ambroziak, The key process parameters influencing formation of columnar microstructure in suspension plasma sprayed zirconia coatings. Surf. Coat. Technol. 260, 97–106 (2014)

    Article  CAS  Google Scholar 

  15. E. Canas, M. Vicent, M.J. Orts, R. Moreno, E. Sanchez, Bioactive glass suspensions preparation for suspension plasma spraying. J. Eur. Ceram. Soc. 36(16), 4281–4290 (2016)

    Article  CAS  Google Scholar 

  16. E. Canas, M. Vicent, M.J. Orts, E. Sanchez, Bioactive glass coatings by suspension plasma spraying from glycolether-based solvent feedstock. Surf. Coat. Technol. 318, 190–197 (2017)

    Article  CAS  Google Scholar 

  17. L. Altomare, D. Bellucci, G. Bolelli, B. Bonferroni, V. Cannillo, L. De Nardo, R. Gadow, A. Killinger, L. Lusvarghi, A. Sola, N. Stiegler, Microstructure and in vitro behaviour of 45S5 bioglass coatings deposited by high velocity suspension flame spraying (HVSFS). J. Mater. Sci. Mater. Med. 22(5), 1303–1319 (2011)

    Article  CAS  Google Scholar 

  18. A. Cattini, D. Bellucci, A. Sola, L. Pawlowski, V. Cannillo, Suspension plasma spraying of optimised functionally graded coatings of bioactive glass/hydroxyapatite. Surf. Coat. Technol. 236, 118–126 (2013)

    Article  CAS  Google Scholar 

  19. J. Cizek, V. Brozek, T. Chraska, F. Lukac, J. Medricky, R. Musalek, T. Tesar, F. Siska, Z. Antos, J. Cupera, M. Matejkova, Z. Spotz, S. Houdkova, M. Kverka, Silver-doped hydroxyapatite coatings deposited by suspension plasma spraying. J. Therm. Spray Technol. 27(8), 1333–1343 (2018)

    Article  CAS  Google Scholar 

  20. J. Cizek, O. Kovarik, F. Siska, J. Bensch, J. Cupera, M. Matejkova, J. Siegl, T. Chraska, K.A. Khor, Increasing fatigue endurance of hydroxyapatite and rutile plasma sprayed biocomponents by controlling deposition in-flight properties. ACS Biomater. Sci. Eng. 5(4), 1703–1714 (2019)

    Article  CAS  Google Scholar 

  21. J. Heat transfer to particles in the plasma flame. In: Proceedings of the American Institute of Chemical Engineering Meeting, pp. 1–9, Los Angeles, 1962.

  22. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd edn. (Wiley, NY, 2008).

    Book  Google Scholar 

  23. M. Hrabovsky, V. Kopecky, V. Sember, T. Kavka, O. Chumak, M. Konrad, Properties of hybrid water/gas DC arc plasma torch. IEEE Trans. Plasma Sci. 34(4), 1566–1575 (2006)

    Article  Google Scholar 

  24. H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22, 151–152 (1967)

    Article  CAS  Google Scholar 

  25. X. Li, H. Gao, M.C. Soteriou, Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations. Phys. Fluids 29(8), 082103 (2017)

    Article  Google Scholar 

  26. L.P. Hsiang, G.M. Faeth, Drop deformation and breakup due to shock wave and steady disturbances. Int. J. Multiphase Flow 21(4), 545–560 (1995)

    Article  CAS  Google Scholar 

  27. J. Medricky, R. Musalek, M. Janata, T. Chraska, and F. Lukac. Cost-effective plasma spraying for large-scale applications. In: International Thermal Spray Conference, pp. 683–689, Orlando, 2018

  28. G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, T. Manfredini, P. Muller, Properties of Al2O3 coatings by high velocity suspension flame spraying (HVSFS): effects of injection systems and torch design. Surf. Coat. Technol. 270, 175–189 (2015)

    Article  CAS  Google Scholar 

  29. T. Tesar, R. Musalek, J. Medricky, J. Cizek, On growth of suspension plasma-sprayed coatings deposited by high-enthalpy plasma torch. Surf. Coat. Technol. 371, 333–343 (2019)

    Article  CAS  Google Scholar 

  30. P. Chraska, J. Dubsky, K. Neufuss, J. Pisacka, Alumina-base plasma-sprayed materials part i: phase stability of alumina and alumina-chromia. J. Therm. Spray Technol. 6(3), 320–326 (1997)

    Article  CAS  Google Scholar 

  31. O. Tingaud, P. Bertrand, G. Bertrand, Microstructure and tribological behavior of suspension plasma sprayed Al2O3 and Al2O3-YSZ composite coatings. Surf. Coat. Technol. 205(4), 1004–1008 (2010)

    Article  CAS  Google Scholar 

  32. E. Klyatskina, E. Rayon, G. Darut, M.D. Salvador, E. Sanchez, G. Montavon, A study of the influence of TiO2 addition in Al2O3 coatings sprayed by suspension plasma spray. Surf. Coat. Technol. 278, 25–29 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Czech Science Foundation Project GA19-10246S is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cizek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cizek, J., Dukovsky, D., Musalek, R. et al. Suspension Spraying Tip: High Molecular Weight Solvent. J Therm Spray Tech 30, 1148–1158 (2021). https://doi.org/10.1007/s11666-021-01192-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01192-0

Keywords

Navigation