Skip to main content

Advertisement

Log in

Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2−x Deposits

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2−x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Scherrer, S. Scherrer, and D. Rowe, Section V Thermoelectric Systems and Applications, Thermoelectric Handbook—Macro to Nano, D.M. Rowe, Ed., Taylor & Francis, 2006

  2. G.J. Snyder and E.S. Toberer, Complex Thermoelectric Materials, Nat. Mater., 2008, 7(2), p 105-114

    Article  Google Scholar 

  3. Y. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder, High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping, Adv. Funct. Mater., 2011, 21(2), p 241-249

    Article  Google Scholar 

  4. M. Zhou, J.-F. Li, and T. Kita, Nanostructured AgPbmSbTem+2 System Bulk Materials with Enhanced Thermoelectric Performance, J. Am. Chem. Soc., 2008, 130(13), p 4527-4532

    Article  Google Scholar 

  5. S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang, and X.B. Zhao, Nanostructures in High-Performance (GeTe)×(AgSbTe2)100−x thermoelectric materials, Nanotechnology, 2008, 19(24), p 245707

    Article  Google Scholar 

  6. H. Lee, R.C. Seshadri, S.J. Han, and S. Sampath, TiO2−X Based Thermoelectric Generators Enabled by Additive and Layered Manufacturing, Appl. Energy, 2017, 192, p 24-32

    Article  Google Scholar 

  7. C. Wood, Materials for Thermoelectric Energy-Conversion, Rep. Prog. Phys., 1988, 51(4), p 459-539

    Article  Google Scholar 

  8. S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, and K. Kalantar-zadeh, Transition Metal Oxides-Thermoelectric Properties, Prog. Mater. Sci., 2013, 58(8), p 1443-1489

    Article  Google Scholar 

  9. H. Lee, S.J. Han, R. Chidambaram Seshadri, and S. Sampath, Thermoelectric Properties of In Situ Plasma Spray Synthesized Sub-Stoichiometry TiO2−x, Sci. Rep., 2016, 6, p 36581

    Article  Google Scholar 

  10. H. Herman, Plasma-Sprayed Coatings, Sci. Am., 1988, 259(3), p 112-117 (in English)

    Article  Google Scholar 

  11. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44-66

    Article  Google Scholar 

  12. P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360

    Article  Google Scholar 

  13. D. Apelian, M. Paliwal, R.W. Smith, and W.F. Schilling, Melting and Solidification in Plasma Spray Deposition—Phenomenological Review, Int. Met. Rev., 2013, 28(1), p 271-294

    Article  Google Scholar 

  14. S. Sampath and H. Herman, Rapid Solidification and Microstructure Development During Plasma Spray Deposition, J. Therm. Spray Technol., 1996, 5(4), p 445-456

    Article  Google Scholar 

  15. L.M. Sun, C.C. Berndt, and C.P. Grey, Phase, Structural and Microstructural Investigations of Plasma Sprayed Hydroxyapatite Coatings, Mater. Sci. Eng. A Struct., 2003, 360(1–2), p 70-84

    Article  Google Scholar 

  16. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, and H. Herman, Effects of Pores and Interfaces on Effective Properties of Plasma Sprayed Zirconia Coatings, Acta Mater., 2003, 51(18), p 5319-5334

    Article  Google Scholar 

  17. W. Chi, S. Sampath, and H. Wang, Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2636-2645

    Article  Google Scholar 

  18. A. Sharma, A. Gouldstone, S. Sampath, and R.J. Gambino, Anisotropic Electrical Conduction from Heterogeneous Oxidation States in Plasma Sprayed TiO2 Coatings, J. Appl. Phys., 2006, 100(11), p 114906

    Article  Google Scholar 

  19. J.R. Colmenares-Angulo, V. Cannillo, L. Lusvarghi, A. Sola, and S. Sampath, Role of Process Type and Process Conditions on Phase Content and Physical Properties of Thermal Sprayed TiO2 Coatings, J. Mater. Sci., 2009, 44(9), p 2276-2287

    Article  Google Scholar 

  20. J.F. Bisson, C. Moreau, M. Dorfman, C. Dambra, and J. Mallon, Influence of Hydrogen on the Microstructure of Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Therm. Spray Technol., 2005, 14(1), p 85-90

    Article  Google Scholar 

  21. A. Vaidya, G. Bancke, S. Sampath, and H. Herman, Influence of Process Variables on the Plasma-sprayed Coatings: An Integrated Study, Thermal Spray 2001: New Surfaces for a New Millennium, Proceedings of the International Thermal Spray Conference, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Eds., May 28–30, 2001 (Singapore), ASM International, Materials Park, OH, 2001, p 1345-1349

  22. S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D.L. Gilmore, and R.A. Neiser, Development of Process Maps for Plasma Spray: Case Study for Molybdenum, Mater. Sci. Eng. A Struct., 2003, 348(1–2), p 54-66

    Article  Google Scholar 

  23. V. Srinivasan, M. Friis, A. Vaidya, T. Streibl, and S. Sampath, Particle Injection in Direct Current Air Plasma Spray: Salient Observations and Optimization Strategies, Plasma Chem. Plasma Process., 2007, 27(5), p 609-623

    Article  Google Scholar 

  24. P. Scardi and M. Leoni, Whole Powder Pattern Modelling, Acta Crystallogr. A, 2002, 58(Pt 2), p 190-200

    Article  Google Scholar 

  25. R.W. Cheary and A. Coelho, A Fundamental Parameters Approach to X-ray Line-Profile Fitting, J. Appl. Crystallogr., 1992, 25(2), p 109-121

    Article  Google Scholar 

  26. S.J. Han, Y. Chen, and S. Sampath, Role of Process Conditions on the Microstructure, Stoichiometry and Functional Performance of Atmospheric Plasma Sprayed La (Sr) MnO3 Coatings, J. Power Sources, 2014, 259, p 245-254

    Article  Google Scholar 

  27. T. Streibl, A. Vaidya, M. Friis, V. Srinivasan, and S. Sampath, A Critical Assessment of Particle Temperature Distributions During Plasma Spraying: Experimental Results for YSZ, Plasma Chem. Plasma Process., 2006, 26(1), p 73-102

    Article  Google Scholar 

  28. R.S. Lima and B.R. Marple, Near-Isotropic Air Plasma Sprayed Titania, Acta Mater., 2004, 52(5), p 1163-1170

    Article  Google Scholar 

  29. I.C. Madsen, N.V.Y. Scarlett, L.M.D. Cranswick, and T. Lwin, Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: Samples 1a to 1h, J. Appl. Crystallogr., 2001, 34(4), p 409-426

    Article  Google Scholar 

  30. I.E. Grey, C. Li, and I.C. Madsen, Phase-Equilibria and Structural Studies on the Solid-Solution MgTi2O5-Ti3O5, J. Solid State Chem., 1994, 113(1), p 62-73

    Article  Google Scholar 

  31. P. Ctibor, R.C. Seshadri, J. Henych, V. Nehasil, Z. Pala, and J. Kotlan, Photocatalytic and Electrochemical Properties of Single- and Multi-layer Sub-stoichiometric Titanium Oxide Coatings Prepared by Atmospheric Plasma Spraying, J. Adv. Ceram., 2016, 5(2), p 126-136

    Article  Google Scholar 

  32. J.F. Banfield, D.R. Veblen, and D.J. Smith, The Identification of Naturally Occurring TiO2 (B) by Structure Determination Using High-Resolution Electron Microscopy, Image Simulation, and Distance-Least-Squares Refinement, Am. Miner., 1991, 76(3–4), p 343-353

    Google Scholar 

  33. A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo, and E.R. Fuller, Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54(12), p 3343-3349

    Article  Google Scholar 

  34. M. Pasandideh-Fard, V. Pershin, S. Chandra, and J. Mostaghimi, Splat Shapes in a Thermal Spray Coating Process: Simulations and Experiments, J. Therm. Spray Technol., 2002, 11(2), p 206-217

    Article  Google Scholar 

  35. H. Zhang, H.B. Xiong, L.L. Zheng, A. Vaidya, L. Li and S. Sampath, Melting Behavior of In-flight Particles and its Effects on Splat Morphology in Plasma Spraying, 2002 ASME International Mechanical Engineering Congress and Exposition, November 17–22, American Society of Mechanical Engineers, New Orleans, LA, 2002

  36. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe, Int. J. Heat Mass Transf., 2007, 50(11), p 2272-2281

    Article  Google Scholar 

  37. Y. Li and T. Ishigaki, Thermodynamic Analysis of Nucleation of Anatase and Rutile from TiO2 Melt, J. Cryst. Growth, 2002, 242(3), p 511-516

    Article  Google Scholar 

  38. A. Singh, Thermal Conductivity of Nanofluids, Def. Sci. J., 2008, 58(5), p 600

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Partnership for Innovation (NSF-PFI) Program under Award Number IIP-1114205. The US-Czech collaboration included in this paper was funded in part by the NSF—International collaboration supplement. Zdenek Pala has been financially supported by the AdMat project of the Czech Science Foundation (14-36566G). Support through the Stony Brook Industrial Consortium for Thermal Spray Technology is also acknowledged. This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory, under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwasoo Lee.

Appendix

Appendix

The earlier work by Vaidya et al. (Ref 21) has shown that the melting state of ceramic particles can be described through group parameter referred to as melting index. This is expressed as:

$${\text{M}} . {\text{I}} .= \frac{{T_{\text{s}} \Delta t_{\text{fly}} }}{D},$$
(2)

where Ts is the measured particle surface temperature (K), Δtfly is the particle in-flight time assuming the constant acceleration of particles (s), and D is the particle size (m), which has the following expression:

$$\Delta t_{\text{fly}} = \frac{2L}{v},$$
(3)

where L is the spray distance (m) and v is the particle velocity (m s−1). More comprehensive formulations have been derived by Zhang et al. (Ref 35) redefined as

$${\text{M}} . {\text{I}} .= \frac{{\Delta t_{\text{fly}} }}{{\Delta t_{\text{melt}} }} \approx \alpha \frac{{\left( {T_{\text{s}} - T_{\text{m}} } \right) \Delta t_{\text{fly}} }}{D}\quad {\text{where}}\,\alpha = A\frac{6h}{{\rho h_{fg} }}\quad {\text{for}}\,{\text{Bi}}{<<}\,1$$
(4)
$$A = \frac{{T_{\text{f}} - T_{\text{m}} }}{{T_{\text{s}} - T_{\text{m}} }}$$
(5)
$${\text{Bi}} = \frac{hD}{{k_{\text{l}} }},$$
(6)

where ΔTmelt is the total melting time (s), Tm is particle melting temperature (K), A is dimensionless factor, h is heat transfer coefficient (W m−2 k−1), ρ is particle density (kg m−3), hfg is enthalpy of fusion (kJ kg−1), Bi is Biot number, Tf is flame temperature (K), and kl is thermal conductivity of liquid material (W m−1 k−1), respectively.

Another group parameter Reynolds number refers to

$$Re = \frac{\rho vD}{\mu } = \frac{vD}{\upsilon },$$
(7)

where µ is dynamic viscosity (Ns m−2 or kg m−1 s−1) and υ is kinematic viscosity (m2 s−1). In this paper, the assumption was made for Tf = Ts since flame temperature around particles is not constant during the time of flight and it is not possible to measure it accurately. For TiO1.9 and TiO1.7 feedstock, the density and particle melting index were measured to be 3.973 and 3.917 kg m−3, and 1942 and 1868 K, respectively. The heat transfer coefficient h was assumed constant for all calculations. Thermophysical properties used in the calculations are summarized in Table 3.

Table 3 Thermophysical properties of TiO2−x used in the calculations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Seshadri, R.C., Pala, Z. et al. Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2−x Deposits. J Therm Spray Tech 27, 968–982 (2018). https://doi.org/10.1007/s11666-018-0731-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0731-1

Keywords

Navigation