Skip to main content
Log in

Barium Titanate Dielectrics Sprayed by a High Feed-Rate Water-Stabilized Plasma Torch

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Barium titanate coatings were first time sprayed by a high feed-rate plasma torch with water stabilization. Two power levels of the torch were applied. Two substrate materials were used—stainless steel and carbon steel. Various substrate preheating levels from 125 to 450 °C were applied to change the cooling conditions. Microstructure, phase composition including crystallinity quantification, surface roughness and microhardness were evaluated. Dielectric measurements proved that coatings with medium-level relative permittivity and with stable loss factor course versus frequency of the AC electric field were fabricated by spraying. The cold substrates provided coatings with low reflectivity and visibly darker surface compare to the hot substrates. The coatings exhibited good dielectric properties—on the top of an expectable range for plasma-sprayed BaTiO3. This study is targeted to coatings prospective for electrical industry, namely via optimization of conditions at the high feed-rate spraying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic, New York, 1971

    Book  Google Scholar 

  2. G.H. Hertling, Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc., 1999, 82(4), p 797–818

    Article  Google Scholar 

  3. M.H. Zhao, D.A. Bonnell, and J.M. Vohs, Effect of Ferroelectric Polarization on the Adsorption and Reaction of Ethanol on BaTiO3, Surf. Sci., 2008, 602, p 2849–2855

    Article  CAS  Google Scholar 

  4. R. Waser, Modeling of Electroceramics—Applications and Prospects, J. Eur. Ceram. Soc., 1999, 19, p 655–664

    Article  CAS  Google Scholar 

  5. N. Setter and R. Waser, Electroceramic Materials, Acta Mater., 2000, 48, p 151–178

    Article  CAS  Google Scholar 

  6. A. Solanki, J. Shrivastava, S. Upadhyay, and S. Choudhary, Modified Structural, Morphological and Photo Electrochemical Properties of 120 MeV Ag9+ Ion Irradiated BaTiO3 Thin Films, Curr. Appl. Phys., 2013, 13(2), p 344–350

    Article  Google Scholar 

  7. B.D. Stojanovic, C.R. Foschini, V.B. Pavlovic, and V.M. Pavlovic, Barium Titanate Screen-printed Thick Films, Ceram. Int., 2002, 28, p 293–298

    Article  CAS  Google Scholar 

  8. W. Bai, B. Shen, F. Fu, and J. Zhai, Dielectric, Ferroelectric, and Piezoelectric Properties of Textured BZT–BCT Lead-Free Thick Film by Screen Printing, Mater. Lett., 2012, 83, p 20–22

    Article  CAS  Google Scholar 

  9. P. Ren, Y. Sun, X. Wang, H. Fan, and G. Zhao, Dielectric Properties of Compositionally Graded Ba1−xLaxTi1−x/4O3 Thick Films, Ceram. Int., 2017, 43, p 5347–5350

    Article  CAS  Google Scholar 

  10. K. Raju and D.H. Yoon, Electrophoretic Deposition of BaTiO3 in an Aqueous Suspension Using Asymmetric Alternating Current, Mater. Lett., 2013, 110, p 188–190

    Article  CAS  Google Scholar 

  11. H. Bruncková, L. Medvecky, and P. Hvizdos, Effect of Sol–Gel Preparation Method on Particle Morphology in Pure and Nanocomposite PZT Thin Films, Chem. Pap., 2011, 65(5), p 682–690

    Article  Google Scholar 

  12. S. Sampath, Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future, J. Therm. Spray Technol., 2010, 19(5), p 921–949

    Article  Google Scholar 

  13. A.H. Dent, A. Patel, J. Gutleber, E. Tormey, S. Sampath, and H. Herman, High Velocity Oxy-Fuel and Plasma Deposition of BaTiO3 and (Ba, Sr)TiO3, Mater. Sci. Eng. B, 2001, 87, p 23–30

    Article  Google Scholar 

  14. X. Zhiguo, W. Haidou, Z. Lina, Z. Xinyuan, and H. Yanfei, Properties of the BaTiO3 Coating Prepared by Supersonic Plasma Spraying, J. Alloys Compd., 2014, 582, p 246–252

    Article  Google Scholar 

  15. P. Ctibor, J. Čížek, J. Sedláček, and F. Lukáč, Dielectric Properties and Vacancy-Like Defects in Plasma Sprayed Barium Titanate, J. Am. Ceram. Soc., 2017, 100(7), p 2972–2983

    Article  CAS  Google Scholar 

  16. M. Schrader, D. Mienert, T.-S. Oh, H.-I. Yoo, and K.D. Becker, An Optical, EPR and Electrical Conductivity Study of Blue Barium Titanate, BaTiO3-δ, Solid State Sci., 2008, 10, p 768–775

    Article  CAS  Google Scholar 

  17. P. Ctibor, J. Sedlacek, and Z. Pala, Structure and Properties of Plasma Sprayed BaTiO3 Coatings After Thermal Posttreatment, Ceram. Int., 2015, 41, p 7453–7460

    Article  CAS  Google Scholar 

  18. A.H. Pakseresht, M.R. Rahimipour, M.R. Vaezi, and M. Salehi, Effect of Heat Treatment on the Microstructure and Dielectric Property of Plasma Sprayed Barium Titanate Films, Int. J. Mater. Res., 2016, 107, p 28–34

    Article  CAS  Google Scholar 

  19. A.H. Pakseresht, M.R. Rahimipour, M.R. Vaezi, and M. Salehi, Thermal Plasma Spheroidization and Spray Deposition of Barium Titanate Powder and Characterization of the Plasma Sprayable Powder, Mater. Chem. Phys., 2016, 173, p 395–403

    Article  CAS  Google Scholar 

  20. M. Hrabovsky, Water-Stabilized Plasma Generators, Pure Appl. Chem., 1998, 70(6), p 1157–1162

    Article  CAS  Google Scholar 

  21. P. Ctibor, H. Ageorges, J. Sedlacek, and R. Ctvrtlik, Structure and Properties of Plasma Sprayed BaTiO3 Coatings, Ceram. Int., 2010, 36, p 2155–2162

    Article  CAS  Google Scholar 

  22. V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings, J. Therm. Spray Technol., 2003, 12(3), p 370–376

    Article  CAS  Google Scholar 

  23. A.A. Kulkarni, A. Goland, H. Herman, A.J. Allen, J. Ilavsky, G.G. Long, C.A. Johnson, and J.A. Ruud, Microstructure–Property Correlations in Industrial Thermal Barrier Coatings, J. Am. Ceram. Soc., 2004, 87(7), p 1294–1300

    Article  CAS  Google Scholar 

  24. H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Crystallogr., 1969, 2(2), p 65–71

    Article  CAS  Google Scholar 

  25. R.W. Cheary and A. Coelho, A Fundamental Parameters Approach to X-ray Line-Profile Fitting, J. Appl. Crystallogr., 1992, 25(2), p 109–121

    Article  CAS  Google Scholar 

  26. O. Morey, P. Goeuriot, D. Juve, and D. Treheux, Dielectric Investigations on ‘MgAlON’ Compounds: Role of Nitrogen Content, J. Eur. Ceram. Soc., 2003, 23(2), p 345–355

    Article  CAS  Google Scholar 

  27. P. Strunz, J. Šaroun, P. Mikula, P. Lukáš, and F. Eichhorn, Double-Bent-Crystall Small-Angle Neutron Scattering Settings and Applications, J. Appl. Crystallogr., 1997, 30, p 844–848

    Article  CAS  Google Scholar 

  28. P. Ctibor, H. Seiner, J. Sedláček, Z. Pala, and P. Vaněk, Phase Stabilization in Plasma Sprayed BaTiO3, Ceram. Int., 2013, 39, p 5039–5048

    Article  CAS  Google Scholar 

  29. P. Gonon and F. El Kamel, Dielectric Response of Cu/Amorphous BaTiO3/Cu Capacitors, J. Appl. Phys., 2007, 101(7), p 901–906

    Article  Google Scholar 

  30. Y.S. Yoon, Y.K. Yoon, and S.S. Yom, Electrical and Optical Properties of Amorphous BaTiO3 Thin Films Grown by Metalorganic Chemical Vapor Deposition on Indium Tin Oxide-Coated Glass, Jpn. J. Appl. Phys., 1994, 33, p 6663–6666

    Article  CAS  Google Scholar 

  31. J. Sedláček, P. Ctibor, J. Kotlan, and Z. Pala, Dielectric Properties of CaTiO3 Coatings Prepared by Plasma Spraying, Surf. Eng., 2013, 29(5), p 384–389

    Article  Google Scholar 

  32. H. Yoshida, A. Uehashi, T. Tokunaga, K. Sasaki, and T. Yamamoto, Formation of Grain Boundary Second Phase in BaTiO3 Polycrystal Under a High DC Electric Field at Elevated Temperatures, J. Ceram. Soc. Jpn., 2016, 124(4), p 388–392

    Article  CAS  Google Scholar 

  33. K. Watanabe, I. Sakaguchi, S. Hishita, N. Ohashi, and H. Haneda, Visualization of Grain Boundary as Blocking Layer for Oxygen Tracer Diffusion and a Proposed Defect Model in Non Doped BaTiO3 Ceramics, Appl. Phys. Express, 2011, 4(055801), p 1–3

    Google Scholar 

  34. T. Oyama, N. Wada, H. Takagi, and M. Yoshiya, Trapping of Oxygen Vacancy at Grain Boundary and its Correlation with Local Atomic Configuration and Resultant Excess Energy in Barium Titanate: A Systematic Computational Analysis, Phys. Rev. B: Condens. Matter, 2010, 82(13), p 134107–134115

    Article  Google Scholar 

  35. C. Voisin, S. Guillemet-Fritsch, P. Dufour, C. Tenailleau, H. Han, and J.C. Nino, Influence of Oxygen Substoichiometry on the Dielectric Properties of BaTiO3-δ Nanoceramics Obtained by Spark Plasma Sintering, Int. J. Appl. Ceram. Technol., 2013, 10, p 122–133

    Article  Google Scholar 

  36. P. Ctibor, H. Ageorges, V. Štengl, N. Murafa, I. Píš, T. Zahoranová, V. Nehasil, and Z. Pala, Structure and Properties of Plasma Sprayed BaTiO3 Coatings: Spray Parameters Versus Structure and Photocatalytic Activity, Ceram. Int., 2011, 37(7), p 2561–2567

    Article  CAS  Google Scholar 

  37. M.A. Mccormick and E.B. Slamovich, Microstructure Development and Dielectric Properties of Hydrothermal BaTiO3 Thin Films, J. Eur. Ceram. Soc., 2003, 23, p 2143–2152

    Article  CAS  Google Scholar 

  38. P. Li and T.-M. Lu, Direct Observation of BaTiO3 Microcrystallites in Thin Amorphous BaTiO3 Films, Appl. Phys. Lett., 1991, 59, p 1064–1071

    Article  CAS  Google Scholar 

  39. M. Shen, S. Ge, and W. Cao, Dielectric Enhancement and Maxwell–Wagner Effects in Polycrystalline Ferroelectric Multilayered Thin Films, J. Phys. D Appl. Phys., 2001, 34, p 2935–2938

    Article  CAS  Google Scholar 

  40. H. Zhao, F. Pan, and Y. Li, A Review on the Effects of TiO2 Surface Point Defects on CO2 Photoreduction with H2O, J. Mater., 2017, 3, p 17–32

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Science Foundation under the Grant No. 14-36566G. SANS measurements were taken at the CANAM infrastructure of the NPI ASCR Řež supported through MŠMT Project No. LM2015056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Ctibor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ctibor, P., Lukáč, F., Sedláček, J. et al. Barium Titanate Dielectrics Sprayed by a High Feed-Rate Water-Stabilized Plasma Torch. J. of Materi Eng and Perform 27, 5291–5299 (2018). https://doi.org/10.1007/s11665-018-3622-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3622-1

Keywords

Navigation