Skip to main content

Advertisement

Log in

Antibacterial Silver-Conjugated Magnetic Nanoparticles: Design, Synthesis and Bactericidal Effect

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim was to design and thoroughly characterize monodisperse Fe3O4@SiO2-Ag nanoparticles with strong antibacterial properties, which makes them a candidate for targeting bacterial infections.

Methods

The monodisperse Fe3O4 nanoparticles were prepared by oleic acid-stabilized thermal decomposition of Fe(III) oleate; the particles were coated with silica shell using a water-in-oil reverse microemulsion, involving hydrolysis and condensation of tetramethyl orthosilicate. Resulting Fe3O4@SiO2 particles were modified by (3-mercaptopropyl)trimethoxysilane to introduce 1.1 mmol SH/g. Finally, the Fe3O4@SiO2-SH nanoparticles were decorated with silver nanoclusters formed by reduction of silver nitrate with NaBH4. The particles were analyzed by FTIR, X-ray photoelectron and atomic absorption spectroscopy, dynamic light scattering and vibrating sample magnetometry. The antibacterial activity of the Fe3O4@SiO2 and Fe3O4@SiO2-Ag nanoparticles was tested against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria cultivated on Luria agar plates or in Luria broth.

Results

The superparamagnetic Fe3O4@SiO2-Ag nanoparticles (21 nm in diameter; saturation magnetization 26 A∙m2/kg) were successfully obtained and characterized. Inhibitory and toxic effects against bacteria were documented by incubation of the Fe3O4@SiO2-Ag nanoparticles with Staphylococcus aureus and Escherichia coli.

Conclusions

The combination of magnetic properties together with bactericidal effects is suitable for the disinfection of medical instruments, water purification, food packaging, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectrometer

Amp:

Ampicillin

CFU:

Colony forming units

Ð :

Dispersity

D h :

Hydrodynamic diameter

DLS:

Dynamic light scattering

D n :

Number-average diameter

DT:

1-Dodecanethiol

D w :

Weight-average diameter

E. coli :

Escherichia coli

Igepal CO-520:

Polyoxyethylene(5) nonylphenylether

IS:

Icosane

LA:

Luria agar plates

LB:

Luria broth

MPTMS:

(3-Mercaptopropyl)trimethoxysilane

NT:

No treatment controls

OA:

Oleic acid

OD:

Octadec-1-ene

PBS:

Phosphate buffered saline

PI :

Polydispersity index

S. aureus :

Staphylococcus aureus

SAM:

Self-assembled monolayer

SBH:

Sodium borohydride

TEM:

Transmission electron microscope

TMOS:

Tetramethyl orthosilicate

XPS:

X-ray photoelectron spectroscopy

References

  1. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46:155–64.

    Article  Google Scholar 

  2. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015;16:22–9.

    Article  Google Scholar 

  3. Lam SJ, Wong EHH, Boyer C, Qiao GQ. Antimicrobial polymeric nanoparticles. Prog Polym Sci. 2018;76:40–64.

    Article  CAS  Google Scholar 

  4. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–49.

    Article  CAS  Google Scholar 

  5. Jennings MC, Minbiole KPC, Wuest WM. Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect Dis. 2015;1:288–303.

    Article  CAS  Google Scholar 

  6. Kim J, Pitts B, Stewart PS, Camper A, Yoon J. Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob Agents Chemother. 2008;52:1446–53.

    Article  CAS  Google Scholar 

  7. Draper LA, Cotter PD, Hill C, Ross RP. Lantibiotic resistance. Microbiol Mol Biol Rev. 2015;79:171–91.

    Article  CAS  Google Scholar 

  8. Clement JL, Jarrett PS. Antibacterial silver. Met Based Drugs. 1994;1:467–82.

    Article  CAS  Google Scholar 

  9. Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A, Bugla-Płoskońska G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci. 2018;19:444.

    Article  Google Scholar 

  10. Radtsig MA, Koksharova OA, Khmel IA. Antibacterial effects of silver ions: effect on gram-negative bacteria growth and biofilm formation. Mol Genet Microbiol Virol. 2009;4:194–9.

    Article  Google Scholar 

  11. Gao SS, Zhao IS, Duffin S, Duangthip D, Lo ECM, Chu CH. Revitalising silver nitrate for caries management. Int J Environ Res Public Health. 2018;15:80.

    Article  Google Scholar 

  12. Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–9.

    Article  CAS  Google Scholar 

  13. Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110:16248–53.

    Article  CAS  Google Scholar 

  14. Cornell RM, Schwertmann U. The Iron oxides: structure, properties, reactions, occurrences and uses. second ed. Darmstadt, Germany: Wiley; 2000.

    Google Scholar 

  15. Laurent S, Forge D, Port M, Roch A, Robic C, van der Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108:2064–110.

    Article  CAS  Google Scholar 

  16. Chaudhuri GR, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;11:2373–433.

    Article  Google Scholar 

  17. Bergna HE, Roberts WO. Colloidal silica: fundamentals and applications. Santa Barbara, USA: CRC Press; 2005.

    Google Scholar 

  18. Stöber W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.

    Article  Google Scholar 

  19. Prabhu YT, Rao KV, Kumari BS, Kumar VSS, Pavani T. Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int Nano Lett. 2015;5:85–92.

    Article  CAS  Google Scholar 

  20. Ismail RA, Sulaiman GM, Abdulrahman SA, Marzoog TR. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater Sci Eng C. 2015;53:286–97.

    Article  CAS  Google Scholar 

  21. Bhattacharya P, Neogi S. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents. Mater Res Express. 2017;4:095005.

    Article  Google Scholar 

  22. Mahmoudi M, Serpooshan V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano. 2012;6:2656–64.

    Article  CAS  Google Scholar 

  23. Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J, et al. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials. 2011;32:4704–13.

    Article  CAS  Google Scholar 

  24. Jiang J, Gu H, Shao H, Devlin E. Bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv Mater. 2008;20:4403–7.

  25. Liu XM, Li YS. One-step facile fabrication of Ag/γ-Fe2O3 composite microspheres. Mater Sci Eng C. 2009;29:1128–32.

  26. Lee D, Cohen RE, Rubner MF. Antibacterial properties of ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir. 2005;21:9651–9.

    Article  CAS  Google Scholar 

  27. Zhang X, Niu H, Yan J, Cai Y. Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloid Surf A. 2011;375:186–92.

    Article  CAS  Google Scholar 

  28. Patsula V, Petrovský E, Kovářová J, Konefal R, Horák D. Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes. Colloid Polym Sci. 2014;292:2097–110.

    Article  CAS  Google Scholar 

  29. Kostiv U, Patsula V, Šlouf M, Pongrac IM, Škokić S, Dobrivojević Radmilović M, et al. Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4&SiO2 core–shell nanoparticles. RSC Adv. 2017;7:8786–97.

    Article  CAS  Google Scholar 

  30. Kostiv U, Janoušková O, Šlouf M, Kotov N, Engstová H, Smolková K, et al. Silica-modified monodisperse hexagonal lanthanide nanocrystals: synthesis and biological properties. Nanoscale. 2015;7:18096–104.

    Article  CAS  Google Scholar 

  31. Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH. Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mat. 2012;24:4572–80.

    Article  CAS  Google Scholar 

  32. Li M, Wu W, Qiao R, Tan L, Li Z, Zhang Y. Ag-decorated Fe3O4@SiO2 core-shell nanospheres: seed-mediated growth preparation and their antibacterial activity during the consecutive recycling. J Alloys Compd. 2016;676:113–9.

    Article  CAS  Google Scholar 

  33. Cai Y, Tan F, Qiao X, Wang W, Chen J, Qiu X. Room-temperature synthesis of silica supported silver nanoparticles in basic ethanol solution and their antibacterial activity. RSC Adv. 2016;6:18407–12.

    Article  CAS  Google Scholar 

  34. Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS One. 2013;8:e57070.

    Article  CAS  Google Scholar 

  35. Garland ER, Rosen EP, Clarke LI, Baer T. Structure of submonolayer oleic acid coverages on inorganic aerosol particles: evidence of island formation. Phys Chem Chem Phys. 2008;10:3156–61.

    Article  CAS  Google Scholar 

  36. Dunlop D, Ozdemir O. Rock Magnetism: Fundamentals and Frontiers. Cambridge, UK: Cambridge University Press; 1997.

    Book  Google Scholar 

  37. Demortiere A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, et al. Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale. 2011;3:225–32.

    Article  CAS  Google Scholar 

  38. Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep. 2017;7:9894.

    Article  Google Scholar 

  39. Iida H, Takayanagi K, Nakanishi T, Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci. 2007;314:274–80.

    Article  CAS  Google Scholar 

  40. Hajipour MJ, Fromm KM, Ashkarran AA, Aberasturi DJ, Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499–511.

    Article  CAS  Google Scholar 

  41. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  CAS  Google Scholar 

  42. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3:95–101.

    Article  CAS  Google Scholar 

  43. Yuan YG, Peng QL, Gurunathan S. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int J Mol Sci. 2017;18:569.

    Article  Google Scholar 

  44. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 2003;69:4278–81.

    Article  CAS  Google Scholar 

  45. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52:662–8.

    Article  CAS  Google Scholar 

  46. Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater. 2015;2015:720654.

    Article  Google Scholar 

  47. Yoon SS, Barrangou-Poueys R, Breidt F, Fleming HP. Detection and characterization of a lytic Pediococcus bacteriophage from the fermenting cucumber brine. J Microbiol Biotechnol. 2007;17:262–70.

    CAS  PubMed  Google Scholar 

  48. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.

    Article  CAS  Google Scholar 

  49. Neal AL. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology. 2008;17:362–71.

    Article  CAS  Google Scholar 

  50. Vidanapathirana AK, Thompson LC, Herco M, Odom J, Sumner SJ, Fennell TR, et al. Acute intravenous exposure to silver nanoparticles during pregnancy induces particle size and vehicle dependent changes in vascular tissue contractility in Sprague Dawley rats. Reprod Toxicol. 2018;75:10–22.

    Article  CAS  Google Scholar 

  51. Li L, Cui J, Liu Z, Zhou X, Li Z, Yu Y, et al. Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum–mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicol Lett. 2018;285:156–67.

    Article  CAS  Google Scholar 

  52. Jiang X, Lu C, Tang M, Yang Z, Jia W, Ma Y, et al. Nanotoxicity of silver nanoparticles on HEK293T cells: a combined study using biomechanical and biological techniques. ACS Omega. 2018;3:6770–8.

    Article  CAS  Google Scholar 

  53. Sahu SC, Zheng J, Graham L, Chen L, Ihrie J, Yourick JJ, et al. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol. 2014;34:1155–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Horák.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatan, A.B., Venclíková, K., Zasońska, B.A. et al. Antibacterial Silver-Conjugated Magnetic Nanoparticles: Design, Synthesis and Bactericidal Effect. Pharm Res 36, 147 (2019). https://doi.org/10.1007/s11095-019-2680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2680-x

KEY WORDS

Navigation