Skip to main content
Log in

Effect of blend ratio and nanofiller localization on the thermal degradation of graphite nanoplatelets-modified PLA/PCL

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A variety of poly(lactic acid) (PLA)-poly(ε-caprolactone) (PCL) samples with different PLA:PCL ratios, containing different contents of graphite nanoplatelets (GrP), were analysed in a thermogravimetric analyser (TG) under, respectively, nitrogen and oxygen atmospheres, and in a differential scanning calorimeter (DSC) in a nitrogen atmosphere. Their respective morphologies were determined through scanning electron microscopy. The TG analyses in nitrogen gave fairly predictable results, but the analyses in oxygen gave complex results that seemed to be dependent on the respective morphologies of the blend samples and on the presence and amount of GrP in the respective samples. It was observed that, depending on the blend or nanocomposite morphologies, the GrP could have played the role of catalysing the degradation process, or inhibiting the onset of degradation by immobilizing the polymer or free radical chains and by delaying the evolution of the degradation products from the respective samples. The DSC results clearly showed the influence of the respective components in the blends and composites on the crystallization behaviour and crystallinities of the two polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun. 2000;21:117–32.

    Article  CAS  Google Scholar 

  2. Delpouve N, Delbreilh L, Stoclet G, Saiter A, Dargent E. Structural dependence of the molecular mobility in the amorphous fractions of polylactide. Macromolecule. 2014;47:5186–97.

    Article  CAS  Google Scholar 

  3. Woodruff MA, Hutmacher DW. The return of a forgotten polymer: polycaprolactone in the 21st century. Progr Polym Sci. 2010;35:1217–56.

    Article  CAS  Google Scholar 

  4. Chen B, Evans JRG. Poly(ε-caprolactone)—clay nanocomposites: structure and mechanical properties. Macromolecules. 2006;39:747–54.

    Article  CAS  Google Scholar 

  5. Darie RN, Pâslaru E, Sdrobis A, Pricope GM, Hitruc GE, Poiată A, Baklavavaridis A, Vasile C. Effect of nanoclay hydrophilicity on the poly(lactic acid)/clay nanocomposites properties. Ind Eng Chem Res. 2014;53:7877–90.

    Article  CAS  Google Scholar 

  6. Khunova V, Kelnar I, Kristof J, Dybal J, Kratochvíl J, Kaprálková L. The effect of urea and urea-modified halloysite on performance of PCL. J Therm Anal Calorim. 2015;120:1283–91.

    Article  CAS  Google Scholar 

  7. Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HY, Causin V. Improvement of tensile properties and tuning of the biodegradation behavior of polycaprolactone by addition of electrospun fibres. Polymer. 2011;52:4054–60.

    Article  CAS  Google Scholar 

  8. Li Y, Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol Biosci. 2007;7:921–8.

    Article  CAS  PubMed  Google Scholar 

  9. Yeh JT, Wu CJ, Tsou CH, Chai WL, Chow JD, Huang CJ, Chen KN, Wu CS. Study on the crystallization, miscibility, morphology, properties of poly (lactic acid)/poly(ε-caprolactone) blends. Polym Plast Technol Eng. 2009;48:571–8.

    Article  CAS  Google Scholar 

  10. Urquijo J, Guerrica-Echevarría G, Eguiazábal JI. Melt processed PLA/PCL blends: effect of processing method on phase structure, morphology, and mechanical properties. J Appl Polym Sci. 2015;132:42641.

    Article  CAS  Google Scholar 

  11. López-Rodríguez N, López-Arraiz A, Meaurio E, Sarasua JR. Crystallization, morphology, and mechanical behavior of polylactide/poly(ε-caprolactone) blends. Polym Eng Sci. 2006;46:1299–308.

    Article  CAS  Google Scholar 

  12. Na YH, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y. Compatibilization effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε-caprolactone) blends. Biomacromolecules. 2002;3:1179–86.

    Article  CAS  PubMed  Google Scholar 

  13. Tuba F, Olah L, Nagy P. Characterization of reactively compatibilized poly (d, l-lactide)/poly(ε-caprolactone) biodegradable blends by essential work of fracture method. Eng Fract Mech. 2011;78:3123–33.

    Article  Google Scholar 

  14. Gelfer MY, Song HH, Liu L, Hsiao BS, Chu B, Rafailovich M, Si M, Zaitsev V. Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly(methyl methacrylate) blends. J Polym Sci B. 2003;41:44–54.

    Article  CAS  Google Scholar 

  15. Kelnar I, Sukhanov V, Rotrekl J, Kaprálková L. Toughening of recycled poly(ethylene terephthalate) with clay-compatibilized rubber phase. J Appl Polym Sci. 2010;116:3621–8.

    CAS  Google Scholar 

  16. Rotrekl J, Sikora A, Kaprálková L, Dybal J, Kelnar I. Effect of an organoclay on the reaction-induced phase-separation in a dynamically asymmetric epoxy/PCL system. eXPRESS Polym Lett. 2013;7:1012–9.

    Article  CAS  Google Scholar 

  17. Bhattacharya SN, Gupta RK, Kamal MR. Polymeric nanocomposites. Munich: Hanser; 2008.

    Google Scholar 

  18. Ray SS, Pouliot S, Bousmina M, Utracki LA. Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer. 2006;45:8403–13.

    Google Scholar 

  19. Shi YY, Zhang WB, Yang JH, Huang T, Zhang N, Wang Y, Yuan GP, Zhang CL. Super toughening of the poly (l-lactide)/thermoplastic polyurethane blends by carbon nanotubes. RSC Adv. 2013;3:26271–82.

    Article  CAS  Google Scholar 

  20. Jain S, Reddy MM, Mohanty AK, Misra M, Ghosh AK. A new biodegradable flexible composite sheet from poly(lactic acid)/poly(ε-caprolactone) blends and micro-talc. Macromol Mater Eng. 2010;295:750–62.

    Article  CAS  Google Scholar 

  21. Kelnar I, Kratochvíl J, Fortelný I, Kaprálková L, Zhigunov A, Kotrisová M, Khunová V, Nevoralová M. Influence of clay-nanofiller geometry on the structure and properties of poly(lactic acid)/thermoplastic polyurethane nanocomposites. RSC Adv. 2016;6:30755–62.

    Article  CAS  Google Scholar 

  22. Hasook A, Tanoue S, Iemoto Y, Unryu T. Characterization and mechanical properties of poly(lactic acid)/poly(ε-caprolactone)/organoclay nanocomposites prepared by melt compounding. Polym Eng Sci. 2006;46:1001–7.

    Article  CAS  Google Scholar 

  23. Potts JR, Dreyer DR, Bielavski CW, Ruoff RS. Graphene-based polymer nanocomposites. Polymer. 2011;52:5–25.

    Article  CAS  Google Scholar 

  24. Cao Y, Zhang J, Feng J, Wu P. Compatibilization of immiscible polymer blends using graphene oxide sheets. ACS Nano. 2011;5:5920–7.

    Article  CAS  PubMed  Google Scholar 

  25. Hua L, Kai W, Inoue Y. Synthesis and characterization of poly(ε-caprolactone)–graphite oxide composites. J Appl Polym Sci. 2007;106:1880–4.

    Article  CAS  Google Scholar 

  26. Kelnar I, Kratochvíl J, Kaprálková L, Zhigunov A, Nevoralová M. Graphite nanoplatelets-modified PLA/PCL: effect of blend ratio and nanofiller localization on structure and properties. J Mech Behav Biomed Mater. 2017;71:271–8.

    Article  CAS  PubMed  Google Scholar 

  27. Forouharshad M, Gardella L, Furfaro D, Galimberti M, Monticelli O. A low-environmental-impact approach for novel bio-composites based on PLLA/PCL blends and high surface area graphite. Eur Polym J. 2015;70:28–36.

    Article  CAS  Google Scholar 

  28. Kelnar I, Kratochvíl J, Fortelný I, Kaprálková L, Zhigunov A, Nevoralová M. Effect of graphite nanoplatelets on melt drawing and properties of PCL/PLA microfibrillar composites. Polym Compos. 2017. https://doi.org/10.1002/pc.24322.

    Article  Google Scholar 

  29. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WMZW, Then YY, The CC. Enhancement of mechanical and thermal properties of polylactic acid/polycaprolactone blends by hydrophilic nanoclay. Indian J Mater Sci. 2013; Article ID 816503.

  30. Botlhoko OJ, Ramontja J, Ray SS. Thermal, mechanical, and rheological properties of graphite- and graphene oxide-filled biodegradable polylactide/poly(ɛ-caprolactone) blend composites. J Appl Polym Sci. 2017;45373:134–40.

    Google Scholar 

  31. Mofokeng JP, Luyt AS. Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polym Test. 2015;45:93–100.

    Article  CAS  Google Scholar 

  32. Mofokeng JP, Luyt AS, Kelnar I. Effect of layered silicates on the thermal stability of PCL/PLA microfibrillar composites. Polym Test. 2016;50:9–14.

    Article  CAS  Google Scholar 

  33. Luyt AS, Kelnar I. Effect of halloysite nano tubes on the thermal degradation behaviour of PCL/PLA microfibrillar composites. Polym Test. 2017;60:166–72.

    Article  CAS  Google Scholar 

  34. Vogel C, Siesler HW. Thermal degradation of poly(ε-caprolactone), poly(l-lactic acid) and their blends with poly(3-hydroxy-butyrate) studied by TGA/FT-IR spectroscopy. Macromol Symp. 2008;265:183–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Czech Science Foundation (Grant No: 16-03194S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriaan Stephanus Luyt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luyt, A.S., Kelnar, I. Effect of blend ratio and nanofiller localization on the thermal degradation of graphite nanoplatelets-modified PLA/PCL. J Therm Anal Calorim 136, 2373–2382 (2019). https://doi.org/10.1007/s10973-018-7870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7870-y

Keywords

Navigation