Skip to main content
Log in

How N-(pyridin-4-yl)pyridin-4-amine and its methyl and nitro derivatives are arranged in the interlayer space of zirconium sulfophenylphosphonate: a problem solved by experimental and calculation methods

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Classical molecular simulation methods were used for a description of an arrangement of intercalated molecules N-(pyridin-4-yl)pyridin-4-amine (AH) and its derivatives, 3-methyl-N-(pyridin-4-yl)pyridin-4-amine (AMe), and 3-nitro-N-(pyridin-4-yl)pyridin-4-amine (ANO2) within a layered structure of zirconium 4-sulfophenylphosphonate. The intercalated molecules were placed between SO3H groups of the host layers. Their mutual positions and orientations were solved by molecular simulation methods and compared with the presented experimental results. Final calculated data showed differences of partially disordered arrangement of the intercalated molecules between zirconium 4-sulfophenylphosphonate layers. The calculation results revealed a dense net of hydrogen bonds connecting water molecules and the guests in the interlayer space and the sulfo groups of the host layers. We calculated the dipole moments of the AH, AMe and ANO2 guests in the final models in order to illustrate potential use of these materials in non-linear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  2. Dalton LR, Sullivan PA, Bale DH (2010) Chem Rev 110:25–55

    CAS  PubMed  Google Scholar 

  3. Dalton LR (2003) J Phys Condens Matter 15:R897–R934

    CAS  Google Scholar 

  4. Cho MJ, Choi DH, Sullivan PA, Akelaitis AJP, Dalton LR (2008) Prog Polym Sci 33:1013–1058

    CAS  Google Scholar 

  5. Epelde-Elezcano N, Duque-Redondo E, Martinez-Martinez V, Manzano H, Lopez-Arbeloa I (2014) Langmuir 30:10112–10117

    CAS  PubMed  Google Scholar 

  6. Ogawa M, Takahashi M, Kuroda K (1994) Chem Mater 6:715–717

    CAS  Google Scholar 

  7. Ogawa M, Ishikawa A (1998) J Mater Chem 8:463–467

    CAS  Google Scholar 

  8. Aloisi GG, Costantino U, Elisei F, Latterini L, Natali C, Nocchetti M (2002) J Mater Chem 12:3316–3323

    CAS  Google Scholar 

  9. Takenawa R, Komori Y, Hayashi S, Kawamata J, Kuroda K (2001) Chem Mater 13:3741–3746

    CAS  Google Scholar 

  10. Diaz U, Cantin A, Corma A (2007) Chem Mater 19:3686–3693

    CAS  Google Scholar 

  11. Evans JSO, Benard S, Yu P, Clement R (2001) Chem Mater 13:3813–3816

    CAS  Google Scholar 

  12. Benard S, Leaustic A, Riviere E, Yu P, Clement R (2001) Chem Mater 13:3709–3716

    CAS  Google Scholar 

  13. Coradin T, Clement R, Lacroix PG, Nakatani K (1996) Chem Mater 8:2153–2158

    CAS  Google Scholar 

  14. Tang M, Yang TS, Zhang Y (2016) Sci China Technol Sci 59:436–441

    CAS  Google Scholar 

  15. Clearfield A, Costantino U (1996). In Alberti G, Bein T (eds) Comprehensive Supramolecular Chemistry. Pergamon Press, Oxford pp. 107–149

  16. Pica M, Donnadio A, Casciola M (2018) Coord Chem Rev 374:218–235

    CAS  Google Scholar 

  17. Al-Othman A, Zhu Y, Tawalbeh M, Tremblay AY, Ternan M (2017) J Porous Mat 24:721–729

    CAS  Google Scholar 

  18. Mohammed H, Al-Othman A, Nancarrow P, Elsayed Y, Tawalbeh M (2019) Int J Hydrogen Energy 1:11. https://doi.org/10.1016/j.ijhydene.2019.09.118

    Article  CAS  Google Scholar 

  19. Casciola M (2019) Solid State Ionics 336:1–10

    CAS  Google Scholar 

  20. Xiao H, Liu S (2018) Mater Des 155:19–35

    CAS  Google Scholar 

  21. Chang Z, Li S, Sun L, Ding C, An X, Qian X (2019) Cellulose 26:6739–6754

    CAS  Google Scholar 

  22. Zhu Y-P, Ren T-Z, Yuan Z-Y (2015) Catal Sci Technol 5:4258–4279

    CAS  Google Scholar 

  23. Ballesteros-Plata D, Infantes-Molina A, Rodríquez-Aquado E, Braos-García P, Rodríguez-Castellón E (2018) Dalton Trans 47:3047–3058

    CAS  PubMed  Google Scholar 

  24. Palomo J, Roriguez-Mirasol J, Cordero T (2019) Materials 12:2204

    CAS  PubMed Central  Google Scholar 

  25. Koteja A, Matusik J, Luberda-Durnaś K, Szczerba M (2019) Materials 12:1436

    CAS  PubMed Central  Google Scholar 

  26. Troup JM, Clearfield A (1977) Inorg Chem 16:3311–3314

    CAS  Google Scholar 

  27. Alberti G (1996) In Alberti G, Bein T (eds) Comprehensive Supramolecular Chemistry. Pergamon Press, Oxford pp 151–187

  28. Clearfield A, Demadis K (2012) Metal phosphonate chemistry: from synthesis to applications. RSC Publishing, Cambridge

    Google Scholar 

  29. Ferlin F, Cappelletti M, Vivani R, Pica M, Piermatti O, Vaccaro L (2019) Green Chem 21:614–626

    CAS  Google Scholar 

  30. Rhauderwiek T, Zhao H, Hirschle P, Döblinger M, Bueken B, Reinsch H, De Vos D, Wuttke S, Kolb U, Stock N (2018) Chem Sci 9:5467–5478

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kopecká K, Melánová K, Beneš L, Knotek P, Mazur M, Zima V (2019) Dalton Trans 1:11. https://doi.org/10.1039/c9dt03883c

    Article  CAS  Google Scholar 

  32. Alberti G, Casciola M, Costantino U, Peraio A, Montoneri E (1992) Solid State Ionics 50:315–322

    CAS  Google Scholar 

  33. Alberti G, Casciola M, Palombari R, Peraio A (1992) Solid State Ionics 58:339–344

    CAS  Google Scholar 

  34. Stein E, Clearfield A, Subramanian MA (1996) Solid State Ionics 83:113–124

    CAS  Google Scholar 

  35. Alberti G, Casciola M, Donnadio A, Piaggio P, Pica M, Sisani M (2005) Solid State Ionics 176:2893–2898

    CAS  Google Scholar 

  36. Zima V, Svoboda J, Melánová K, Beneš L, Casciola M, Sganappa M, Brus J, Trchová M (2010) Solid State Ionics 181:705–713

    CAS  Google Scholar 

  37. Svoboda J, Zima V, Melánová K, Beneš L, Trchová M (2013) J Solid State Chem 208:58–64

    CAS  Google Scholar 

  38. Škoda J, Pospíšil M, Kovář P, Melánová K, Svoboda J, Beneš L, Zima V (2018) J Mol Model 24:10

    Google Scholar 

  39. Bureš F, Cvejn D, Melánová K, Beneš L, Svoboda J, Zima V, Pytela O, Mikysek T, Růžičková Z, Kityk IV, Wojciechowski A, AlZayed N (2016) J Mater Chem C 4:468–478

    Google Scholar 

  40. Alekseev RS, Kurkin AV, Yurovskaya MA (2012) Chem Heterocycl Comput 48:1235–1250

    CAS  Google Scholar 

  41. Knotek P, Čapek L, Bulánek R, Adam J (2007) Top Catal 45:51–55

    CAS  Google Scholar 

  42. Bulánek R, Čičmanec P, Sheng-Yang H, Knotek P, Čapek L, Setnička M (2012) Appl Catal A 415:29–39

    Google Scholar 

  43. Accelrys Software (2003) Materials studio modeling environment, Release 4.3 documentation. Accelrys Software Inc, San Diego

    Google Scholar 

  44. Clearfield A, Smith SD (1968) J Colloid Interface Sci 28:325–330

    CAS  Google Scholar 

  45. Sun H (1998) J Phys Chem B 102:7338–7364

    CAS  Google Scholar 

  46. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A (1984) J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  47. Rappe AK, Goddard WA III (1991) J Phys Chem 95:3358–3363

    CAS  Google Scholar 

  48. Karasawa N, Goddard WA III (1989) J Phys Chem 93:7320–7327

    CAS  Google Scholar 

  49. Wells BA, Chaffee AL (2015) J Chem Theory Comput 11:3684–3695

    CAS  PubMed  Google Scholar 

  50. Škoda J, Pospíšil M, Kovář P, Melánová K, Svoboda J, Beneš L, Zima V (2019) J Phys Chem C 123:2488–2495

    Google Scholar 

Download references

Acknowledgements

The authors thank to the Czech Science Foundation (Projects No. 17-10639S); J. Š. thanks to project SVV260 443 "Studentský výzkum v oboru biofyzika a chemická fyzika" for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pospíšil.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovář, P., Škoda, J., Pospíšil, M. et al. How N-(pyridin-4-yl)pyridin-4-amine and its methyl and nitro derivatives are arranged in the interlayer space of zirconium sulfophenylphosphonate: a problem solved by experimental and calculation methods. J Comput Aided Mol Des 34, 683–695 (2020). https://doi.org/10.1007/s10822-020-00299-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00299-w

Keywords

Navigation