Skip to main content

Advertisement

Log in

Deciphering the Late Paleozoic to Mesozoic tectono sedimentary evolution of the northern Bohemian Massif from detrital zircon geochronology and heavy mineral provenance

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

From Permian to Late Cretaceous, the northern Bohemian Massif experienced a complex intra-plate tectono sedimentary evolution involving development of at least four generations of sedimentary basins in different settings. We examine this protracted evolution using stratigraphic changes in sediment provenance, analyzed through heavy mineral assemblages and U–Pb detrital zircon geochronology (by laser-ablation ICP–MS) in Permian, Jurassic, and Late Cretaceous successions. The provenance data point to multiple, temporally evolving sources ranging from local (e.g., the ʽWest Sudetic Islandʼ) through more distant from elsewhere in the Bohemian Massif to exotic, likely derived from Baltica. The latter is interpreted as a trace of now completely eroded Late Jurassic to Early Cretaceous basin that once covered the Lusatian (Lausitz) Block and received the Baltica-derived detritus from northerly fluvial and deltaic depositional systems. We suggest that fill of this basin was recycled into the Bohemian Cretaceous Basin during progressive unroofing of the West Sudetic Island. A time-slice reconstruction of the paleogeographic and tectono sedimentary evolution of the northern Bohemian Massif is then developed to show that periods of basin development and deposition (early Permian, late early Permian to Early Triassic, Middle Jurassic–Early Cretaceous, and Late Cretaceous) were interrupted by major depositional gaps (Middle Triassic–Early Jurassic, mid-Cretaceous, and post-early Campanian). The Mesozoic depositional episodes resulted from reactivation of major NW–SE strike-slip fault zones due to stress transfer from the North Atlantic Rift during Jurassic to Early Cretaceous, overridden by the far-field effect of convergence of Iberia, Africa, and Europe during Late Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified after Mlčoch et al. (in press)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andersen T, Saeed A, Gabrielsen RH, Olaussen S (2011) Provenance characteristics of the Brumunddal sandstone in the Oslo Rift derived from U-Pb, Lu–Hf and trace element analyses of detrital zircons by laser ablation ICMPS. Norweg J Geol 91:1–19

    Google Scholar 

  • Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88:1305–1320. https://doi.org/10.1130/0016-7606(1977)88%3c1305:LPSFIS%3e2.0.CO;2

    Article  Google Scholar 

  • Asch K (2005) IGME 5000: 1: 5 Million international geological map of Europe and adjacent areas. BGR, Hannover

    Google Scholar 

  • Augustsson C, Voigt T, Bernhart K, Kreißler M, Gaupp R, Gärtner A, Hofmann M, Linnemann U (2018) Zircon size-age sorting and source-area effect: the German Triassic Buntsandstein Group. Sediment Geol 375:218–231. https://doi.org/10.1016/j.sedgeo.2017.11.004

    Article  Google Scholar 

  • Awdankiewicz M, Awdankiewicz H, Kryza R, Rodionov N (2010) SHRIMP zircon study of a micromonzodiorite dyke in the Karkonosze Granite, Sudetes (SW Poland): age constraints for late Variscan magmatism in Central Europe. Geol Mag 147:77–85. https://doi.org/10.1017/S001675680999015X

    Article  Google Scholar 

  • Berg G (1938) Erläuterungen zu Blatt Landeshut. Lieferung 193, Preussische Geologische Landesanstalt, Berlin

  • Bergerat F (1987) Stress fields in the European platform at the time of Africa-Eurasia collision. Tectonics 6:99–132. https://doi.org/10.1029/TC006i002p00099

    Article  Google Scholar 

  • Betz D, Führer F, Greiner G, Plein E (1987) Evolution of the Lower Saxony Basin. Tectonophysics 137:127–170. https://doi.org/10.1016/0040-1951(87)90319-2

    Article  Google Scholar 

  • Białek D, Kryza R, Oberc-Dziedzic T, Pin C (2014) Cambrian Zawidów granodiorites in the Cadomian Lusatian Massif (Central European Variscides): what do the SHRIMP zircon ages mean? J Geosci 59:313–326. https://doi.org/10.3190/jgeosci.179

    Article  Google Scholar 

  • Biernacka J (2012a) Detritus from Variscan lower crust in rotliegend sandstones of the intra-Sudetic Basin, SW Poland, revealed by detrital high-pyrope garnet. Ann Soc Geol Poloniae 82:127–138

    Google Scholar 

  • Biernacka J (2012b) Provenance of Upper Cretaceous quartz-rich sandstones from the North Sudetic Synclinorium, SW Poland: constraints from detrital tourmaline. Geol Quarterly 56:315–332. https://doi.org/10.7306/gq.1024

    Article  Google Scholar 

  • Biernacka J, Józefiak M (2009) The Eastern Sudetic Island in the Early-to-Middle Turonian: evidence from heavy minerals in the Jerzmanice sandstones, SW Poland. Acta Geol Polonica 59:545–565

    Google Scholar 

  • Bingen B, Solli A (2009) Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: synopsis for detrital zircon provenance studies. Norsk Geol Tidssk 89:267–290

    Google Scholar 

  • Brink HJ, Dürschner H, Trappe H (1992) Some aspects of the late and post-Variscan development of the northwestern German Basin. Tectonophysics 207:65–95. https://doi.org/10.1016/0040-1951(92)90472-I

    Article  Google Scholar 

  • Bruder G (1881) Zur Kenntnis der Juraablagerungen von Sternberg bei Zeidler in Böhmen. Sitz Ber Akad Wiss 83:47–49

    Google Scholar 

  • Bruder G (1882) Neue Beitrage zur Kenntnis der Juraablagerungen im nördlich Böhmen I. Sitz Ber Akad Wiss 85:450–490

    Google Scholar 

  • Burg JP, van den Driessche J, Brun JP (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géol France 3:33–51

    Google Scholar 

  • Čech S (2011) Palaeogeography and stratigraphy of the Bohemian Cretaceous Basin (Czech Republic): an overview. Geol Res Moravia Silesia 18:18–21

    Google Scholar 

  • Čech S, Klein V, Kříž J, Valečka J (1980) Revision of the Upper Cretaceous stratigraphy of the Bohemian Cretaceous Basin. Bull Centr Geol Surv 55:277–296

    Google Scholar 

  • Cháb J, Stráník Z, Eliáš M (2007) Geological map of the Czech Republic 1:500,000. Czech Geological Survey, Prague

    Google Scholar 

  • Cloetingh S (1986) Intraplate stresses: a new tectonic mechanism for fluctuations of relative sea level. Geology 14:617–620. https://doi.org/10.1130/0091-7613(1986)14%3c617:ISANTM%3e2.0.CO;2

    Article  Google Scholar 

  • Cloetingh S, McQueen H, Lambeck K (1985) On a tectonic mechanism for regional sea level variations. Earth Planet Sci Lett 75:157–166. https://doi.org/10.1016/0012-821X(85)90098-6

    Article  Google Scholar 

  • Cloetingh SAPL, Ziegler PA, Bogaard PJF, Andriessen PAM, Artemieva IM, Bada G, van Balen RT, Beekman F, Ben-Avraham Z, Brun JP, Bunge HP, Burov EB, Carbonell R, Faccenna C, Friedrich A, Gallart J, Green AG, Heidbach O, Jones AG, Matenco L, Mosar J, Oncken O, Pascal C, Peters G, Sliaupa S, Soesoo A, Spakman W, Stephenson RA, Thybo H, Torsvik T, de Vicente G, Wenzel F, Wortel MJR (2007) TOPO-EUROPE: the geoscience of coupled deep Earth-surface processes. Global Planet Change 58:1–118. https://doi.org/10.1016/j.gloplacha.2007.02.008

    Article  Google Scholar 

  • Coubal M (1990) Compression along faults: example from the Bohemian Cretaceous Basin. Mineral Slovaca 22:139–144

    Google Scholar 

  • Coubal M, Adamovič J, Málek J, Prouza V (2014) Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif. J Geosci 59:183–208. https://doi.org/10.3190/jgeosci.174

    Article  Google Scholar 

  • Coubal M, Málek J, Adamovič J, Štěpančíková P (2015) Late Cretaceous and Cenozoic dynamics of the Bohemian Massif inferred from the paleostress history of the Lusatian Fault Belt. J Geodyn 87:26–49. https://doi.org/10.1016/j.jog.2015.02.006

    Article  Google Scholar 

  • Dallmeyer RD, Franke W, Weber K (1995) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin

    Book  Google Scholar 

  • Danišík M, Migoń P, Kuhlemann J, Evans NJ, Dunkl I, Frisch W (2010) Thermochronological constraints on the long-term erosional history of the Karkonosze Mts., Central Europe. Geomorphology 117:78–89. https://doi.org/10.1016/j.geomorph.2009.11.010

    Article  Google Scholar 

  • Dewey JF, Helman ML, Turco E, Hutton DHW, Knott SD (1989) Kinematics of the western Mediterranean. Geol Soc London Spec Publ 45:265–283. https://doi.org/10.1144/GSL.SP.1989.045.01.15

    Article  Google Scholar 

  • Doré AG (1991) The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. Palaeogeogr Palaeocl 87:441–492. https://doi.org/10.1016/0031-0182(91)90144-G

    Article  Google Scholar 

  • Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci 99:299–325. https://doi.org/10.1007/s00531-008-0389-x

    Article  Google Scholar 

  • Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U-Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). Geol Rundsch 87:135–149. https://doi.org/10.1007/s005310050195

    Article  Google Scholar 

  • Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U-Pb detrital zircon ages. Gondwana Res 19:213–231. https://doi.org/10.1016/j.gr.2010.05.003

    Article  Google Scholar 

  • Edel JB, Weber K (1995) Cadomian terranes, wrench faulting and thrusting in the central Europe Variscides: geophysical and geological evidence. Geol Rundsch 84:412–432. https://doi.org/10.1007/BF00260450

    Article  Google Scholar 

  • Eliáš M (1981) Facies and paleogeography of the Jurassic of the Bohemian Massif. J Geol Sci Geol 35:75–144

    Google Scholar 

  • Erratt D, Thomas GM, Wall GRT (1999) The evolution of the Central North Sea Rift. Geol Soc London Petrol Geol Conf Ser 5:63–82. https://doi.org/10.1144/0050063

    Article  Google Scholar 

  • Fediuk F, Losert J, Röhlich P, Šilar J (1958) Geological setting of area in the vicinity of the Lusatian Fault in Šluknov spur. Transact Czechoslovak Acad Sci Ser Mat Sci 68:1–42

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc London Spec Publ 179:35–61. https://doi.org/10.1144/GSL.SP.2000.179.01.05

    Article  Google Scholar 

  • Franke W (2006) The Variscan orogen in Central Europe: construction and collapse. Geol Soc London Mem 32:333–343. https://doi.org/10.1144/GSL.MEM.2006.032.01.20

    Article  Google Scholar 

  • Gehmlich M, Linnemann U, Tichomirowa M, Lützner H, Bombach K (1997) Die Bestimmung des Sedimentationsalters cadomischer Krustenfragmente im Saxothuringikum durch die Einzelzirkon Evaporatisationsmethode. Terra Nostra 5:46–49

    Google Scholar 

  • Golonka J, Oszczypko N, Ślączka A (2000) Late Carboniferous-Neogene geodynamic evolution and palaeogeography of the Circum-Carpathian region and adjacent areas. Ann Soc Geol Pol 70:107–136

    Google Scholar 

  • Guiraud R, Bosworth W (1999) Phanerozoic geodynamic evolution of northeastern Africa and the northwestern Arabian platform. Tectonophysics 315:73–108. https://doi.org/10.1016/S0040-1951(99)00293-0

    Article  Google Scholar 

  • Gutowski J, Krzywiec P, Pożaryski W (2003) From extension to inversion: sedimentary record of Mesozoic tectonic evolution within the Marginal Fault Zone, SE Mid-Polish Trough. Geolines 16:38–39

    Google Scholar 

  • Hajná J, Žák J, Dörr W (2017) Time scales and mechanisms of growth of active margins of Gondwana: a model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex, Bohemian Massif. Gondwana Res 42:63–83. https://doi.org/10.1016/j.gr.2016.10.004

    Article  Google Scholar 

  • Hajná J, Žák J, Dörr W, Kachlík V, Sláma J (2018) New constraints from detrital zircon ages on prolonged, multiphase transition from the Cadomian accretionary orogen to a passive margin of Gondwana. Precambrian Res 317:159–178. https://doi.org/10.1016/j.precamres.2018.08.013

    Article  Google Scholar 

  • Hayward AB, Graham RH (1989) Some geometrical characteristic of inversion. Geol Soc London Spec Publ 44:17–39. https://doi.org/10.1144/GSL.SP.1989.044.01.03

    Article  Google Scholar 

  • Hecht L, Vigneresse JL, Morteani G (1997) Constraints on the origin of zonation of the granite complexes in the Fichtelgebirge (Germany and Czech Republic): evidence from a gravity and geochemical study. Geol Rundsch 86:93–109. https://doi.org/10.1007/PL00014669

    Article  Google Scholar 

  • Herčík F, Herrmann Z, Valečka J (2003) Hydrogeology of the Bohemian Cretaceous Basin. Czech Geological Survey, Prague

    Google Scholar 

  • Hofmann M, Linnemann U, Voigt T (2013) The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany): syntectonic sedimentation and inverted zircon age populations revealed by LA-ICP-MS U/Pb data. Geol Saxonica 59:101–130

    Google Scholar 

  • Hofmann M, Voigt T, Bittner L, Gärtner A, Zieger J, Linnemann U (2018) Reworked Middle Jurassic sandstones as a marker for Upper Cretaceous basin inversion in Central Europe: a case study for the U-Pb detrital zrcon record of the Upper Cretaceous Schmilka section and their implication for the sedimentary cover of the Lausitz. Int J Earth Sci 107:913–932. https://doi.org/10.1007/s00531-017-1552-z

    Article  Google Scholar 

  • Holcová K, Holcová M (2016) Calcareous nannoplankton in the Upper Jurassic marine deposits of the Bohemian Massif: new data concerning the Boreal-Tethyan communication corridor. Geol Quarterly 60:624–636. https://doi.org/10.7306/gq.1282

    Article  Google Scholar 

  • Holub FV, Cocherie A, Rossi P (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex: constraints on the chronology of thermal and tectonic events along the Barrandian-Moldanubian boundary. Compt Rend Acad Sci Ser IIA Earth Planet Sci 325:19–26

    Google Scholar 

  • Hrbek J (2014) The Systematics and paleobiogeographic significance of sub-Boreal and Boreal ammonites (Aulacostephanidae and Cardioceratidae) from the Upper Jurassic of the Bohemian Massif. Geol Carpath 65:375–386. https://doi.org/10.2478/geoca-2014-0026

    Article  Google Scholar 

  • Hubert JF (1962) A zircon–tourmaline–rutile maturity index and the interdependence of the composition of heavy mineral assamblages with the gross composition and texture of sandstones. J Sediment Petrol 32:440–450. https://doi.org/10.1306/74D70CE5-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Illies H (1975) Intraplate tectonics in stable Europe as related to plate tectonics in the Alpine system. Geol Rundsch 64:677–699. https://doi.org/10.1007/BF01820690

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017

    Article  Google Scholar 

  • Jakob J, Alsaif M, Corfu F, Andersen TB (2017) Age and origin of thin discontinuous gneiss sheets in the distal domain of the magma-poor hyperextended pre-Caledonian margin of Baltica, southern Norway. J Geol Soc London 174:557–571. https://doi.org/10.1144/jgs2016-049

    Article  Google Scholar 

  • Janetschke N, Wilmsen M (2014) Sequence stratigraphy of the lower Upper Cretaceous Elbtal Group (Cenomanian–Turonian of Saxony, Germany). Z Dt Ges Geowiss 165:179–207. https://doi.org/10.1127/1860-1804/2013/0036

    Article  Google Scholar 

  • Janoušek V, Wiegand BA, Žák J (2010) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U-Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. J Geol Soc London 167:347–360. https://doi.org/10.1144/0016-76492009-008

    Article  Google Scholar 

  • Kemnitz H (2007) The Lausitz graywackes, Saxo-Thuringia, Germany: witness to the Cadomian Orogeny. Geol Soc Am Spec Paper 423:97–141. https://doi.org/10.1130/2007.2423(04)

    Article  Google Scholar 

  • Klein V (1966) Stratigraphy and lithology of Upper Cretaceous between Jizera and Elbe. J Geol Sci Geol 11:49–76

    Google Scholar 

  • Klein V, Müller V, Valečka J (1979) Lithofazielle und paläogeographische Entwicklung des Böhmischen Kreidebeckens. In: Wiedmann J (ed) Aspekte des Kreide Europas. IUGS Series A, 6, pp 435–446

  • Klein T, Kiehm S, Siebel W, Shang CK, Rohrmüller J, Dörr W, Zulauf G (2008) Age and emplacement of late-Variscan granites of the western Bohemian Massif with main focus on the Hauzenberg granitoids (European Variscides, Germany). Lithos 102:478–507. https://doi.org/10.1016/j.lithos.2007.07.025

    Article  Google Scholar 

  • Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in Central Europe: effect of Africa–Iberia–Europe convergence, not Alpine collision. Geology 36:839–842. https://doi.org/10.1130/G24930A.1

    Article  Google Scholar 

  • Kockel F (1986) Upper Cretaceous biostratigraphy: the key to the understanding of inversion tectonics in NW-Germany. Ann Soc géol Belgique 109:357–361

    Google Scholar 

  • Kockel F (2003) Inversion structures in Central Europe: expressions and reasons, an open discussion. Netherlands J Geosci 82:351–366. https://doi.org/10.1017/S0016774600020187

    Article  Google Scholar 

  • Košler J, Kelley S, Vrána S (2001) 40Ar/39Ar hornblende dating of a microgranodiorite dyke: implications for early Permian extension in the Moldanubian Zone of the Bohemian Massif. Int J Earth Sci 90:379–385. https://doi.org/10.1007/s005310000154

    Article  Google Scholar 

  • Košler J, Konopásek J, Sláma J, Vrána S (2014) U-Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc London 171:83–95. https://doi.org/10.1144/jgs2013-059

    Article  Google Scholar 

  • Košťák M, Čech S, Uličný D, Sklenář J, Ekrt B, Mazuch M (2018) Ammonites, inoceramids and stable carbon isotopes of the Cenomanian-Turonian OAE2 interval in central Europe: Pecínov quarry, Bohemian Cretaceous Basin (Czech Republic). Cretaceous Res 87:150–173. https://doi.org/10.1016/j.cretres.2017.04.013

    Article  Google Scholar 

  • Kroner U, Romer RL (2013) Two plates — many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329. https://doi.org/10.1016/j.gr.2013.03.001

    Article  Google Scholar 

  • Kröner A, Hegner E, Hammer J, Haase G, Bielicki KH, Krauss M, Eidam J (1994) Geochronology and Nd–Sr systematics of Lusatian granitoids, significance for the evolution of the Variscan orogen in east–central Europe. Geol Rundsch 83:357–376. https://doi.org/10.1007/BF00210551

    Article  Google Scholar 

  • Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). Int J Earth Sci 90:304–324. https://doi.org/10.1007/s005310000139

    Article  Google Scholar 

  • Kryza R, Pin C, Oberc-Dziedzic T, Crowley QG, Larionov A (2014) Deciphering the geochronology of a large granitoid pluton (Karkonosze Granite, SW Poland): an assessment of U-Pb zircon SIMS and Rb–Sr whole-rock dates relative to U–Pb zircon CA-ID-TIMS. Int Geol Rev 56:756–782. https://doi.org/10.1080/00206814.2014.886364

    Article  Google Scholar 

  • Krzywiec P (2006) Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough: lateral variations in timing and structural style. Geol Quarterly 51:151–168. https://doi.org/10.7306/gq.v50i1.7403

    Article  Google Scholar 

  • Krzywiec P, Stachowska A (2016) Late Cretaceous inversion of the NW segment of the Mid-Polish Trough: how marginal troughs were formed, and does it matter at all? Z Dt Ges Geowiss 167:107–119. https://doi.org/10.1127/ZDtGesGeowiss/2016/0068

    Article  Google Scholar 

  • Krzywiec P, Stachowska A, Stypa A (2018) The only way is up: on Mesozoic uplifts and basin inversion events in SE Poland. Geol Soc London Spec Publ 469:33–57. https://doi.org/10.1144/SP469.14

    Article  Google Scholar 

  • Kučera M, Pešek J (1982) Geology of the Česká Kamenice Basin and vicinity. Acta Univ Carol Geol 3:285–295

    Google Scholar 

  • Lake SD, Karner GD (1987) The structure and evolution of the Wessex Basin, southern England: an example of inversion tectonics. Tectonophysics 137:347–378. https://doi.org/10.1016/0040-1951(87)90328-3

    Article  Google Scholar 

  • Lamminen J, Andersen T, Nystuen JP (2011) Zircon U-Pb ages and Lu–Hf isotopes from basement rocks associated with Neoproterozoic sedimentary successions in the Sparagmite region and adjacent areas, south Norway: the crustal architecture of western Baltica. Norsk Geologisk Tidssk 91:35–55

    Google Scholar 

  • Laurin J, Uličný D (2004) Controls on a shallow-water hemipelagic carbonate system adjacent to a siliciclastic margin: example from late Turonian of Central Europe. J Sediment Res 74:697–717. https://doi.org/10.1306/020904740697

    Article  Google Scholar 

  • Le Pichon X, Bergerat F, Roulet MJ (1988) Plate kinematics and tectonics leading to the Alpine belt formation: a new analysis. Geol Soc Am Spec Paper 218:111–131. https://doi.org/10.1130/SPE218-p111

    Article  Google Scholar 

  • Leszczyński S (2018) Integrated sedimentological and ichnological study of the Coniacian sedimentation in North Sudetic Basin, SW Poland. Geol Quarterly 62:767–816. https://doi.org/10.7306/gq.1440

    Article  Google Scholar 

  • Liboriussen J, Ashton P, Tygesen T (1987) The tectonic evolution of the Fennoscandian border zone in Denmark. Tectonophysics 137:21–29. https://doi.org/10.1016/0040-1951(87)90310-6

    Article  Google Scholar 

  • Linnemann U, Romer R (2002) The Cadomian Orogeny in Saxo-Thuringia, Germany: geochemical and Nd–Sr–Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64. https://doi.org/10.1016/S0040-1951(02)00188-9

    Article  Google Scholar 

  • Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützer H, Bomback K (2000) From Cadomian subduction to Early Paleozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). Geol Soc London Spec Publ 179:131–153. https://doi.org/10.1144/GSL.SP.2000.179.01.10

    Article  Google Scholar 

  • Linnemann U, McNaughton NJ, Romer R, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci 93:683–705. https://doi.org/10.1007/s00531-004-0413-8

    Article  Google Scholar 

  • Lojka R (2003) Sedimentology of alluvial deposits and source of a clastic material of the Trutnov Formation in the Intra-Sudetic Basin (lower Permian, Bohemia). MSc. thesis, Charles University, Prague (in Czech)

  • Lorenz V, Nicholls IA (1976) The Permocarboniferous Basin and Range Province of Europe. An application of plate tectonics. In: Falke H (ed) The Continental Permian in Central, West, and South Europe. D. Reidel Publishing Company, Dordrecht, pp 313–342

    Chapter  Google Scholar 

  • Lorenz V, Nicholls IA (1984) Plate and intraplate processes of Hercynian Europe during the Late Paleozoic. Tectonophysics 107:25–56. https://doi.org/10.1016/0040-1951(84)90027-1

    Article  Google Scholar 

  • Ludwig KR (2008) Isoplot/Ex 3.70 A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication 4, Berkeley

  • Malkovský M (1987) The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics 137:31–42. https://doi.org/10.1016/0040-1951(87)90311-8

    Article  Google Scholar 

  • Marotta AM, Bayer U, Scheck M, Thybo H (2001) The stress field below the NE German basin: effects induced by the Alpine collision. Geophys J Int 144:8–12. https://doi.org/10.1046/j.1365-246x.2001.00373.x

    Article  Google Scholar 

  • Marshak S, Paulsen T (1996) Midcontinent U.S. fault and fold zones: a legacy of Proterozoic intracratonic extensional tectonism? Geology 24:151–154. https://doi.org/10.1130/0091-7613(1996)024%3c0151:MUSFAF%3e2.3.CO;2

    Article  Google Scholar 

  • Martínek K, Štolfová K (2009) Provenance study of Permian–Triassic non-marine sandstones and conglomerates of the Krkonoše Piedmont Basin (Czech republic): exotic marine limestone pebbles, heavy minerals and garnet mineralogy. Bull Geosci 84:555–568. https://doi.org/10.3140/bull.geosci.1064

    Article  Google Scholar 

  • Martínek K, Uličný D (2001) Depositional processes in a low-sinuosity fluvial system: facies and depositional geometries of the Permian Havlovice Member, Krkonoše Piedmont Basin. Geolines 13:89–90

    Google Scholar 

  • Martínek K, Blecha M, Daněk V, Franců J, Hladíková J, Johnová R, Uličný D (2006) Record of palaeoenvironmental changes in a Lower Permian organic-rich lacustrine succession: integrated sedimentological and geochemical study of the Rudník Member, Krkonoše Piedmont Basin, Czech Republic. Palaeogeogr Palaeocl 230:85–128. https://doi.org/10.1016/j.palaeo.2005.07.009

    Article  Google Scholar 

  • Martínek K, Verner K, Buriánek D, Žáček V (2012) Source rocks of detrital biotite in lower Permian sandstones of the northern margin of the Krkonoše Piedmont Basin. Geosci Res Rep 46:45–50

    Google Scholar 

  • Mattern F (2001) Permo-Silesian movements between Baltica and Western Europe: tectonics and ‘basin families’. Terra Nova 13:368–375. https://doi.org/10.1046/j.1365-3121.2001.00368.x

    Article  Google Scholar 

  • Meier T, Soomro RA, Viereck L, Lebedev S, Behrmann JH, Weidle C, Cristiano L, Hanemann R (2016) Mesozoic and Cenozoic evolution of the Central European lithosphere. Tectonophysics 692:58–73. https://doi.org/10.1016/J.TECTO.2016.09.016

    Article  Google Scholar 

  • Meinhold G, Morton AC, Fanning CM, Frei D, Howard JP, Phillips RJ, Strogen D, Whitham AG (2011) Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth Planet Sci Lett 312:164–175. https://doi.org/10.1016/j.epsl.2011.09.056

    Article  Google Scholar 

  • Ménard G, Molnar P (1988) Collapse of a Hercynian Tibetan Plateau into a late Palaeozoic European Basin and Range province. Nature 334:235–237. https://doi.org/10.1038/334235a0DO

    Article  Google Scholar 

  • Mlčoch B, Krentz O, Nádaskay R, Valečka J, Mrázová Š, Junge R, Reinhardt S, Pohle M (in press) Geologische Karte des Sächsisch–Böhmischen Kreidebeckens. Czech Geological Survey and Saxony State Office for the Environment Agriculture and Geology

  • Mortimore RN (1986) Controls on Upper Cretaceous sedimentation in the South Downs with particular reference to flint distribution. In: Hart MB (ed) Sieveking G de G. The Scientific Study of Flint and Chert. Cambridge University Press, Cambridge, pp 21–42

    Google Scholar 

  • Mortimore RN (2018) Late Cretaceous tectono-sedimentary events in NW Europe. Proc Geol Assoc 129:392–420. https://doi.org/10.1016/j.pgeola.2017.12.004

    Article  Google Scholar 

  • Mortimore RN, Pomerol B (1997) Upper Cretaceous tectonic phases and end Cretaceous inversion in the Chalk of the Anglo-Paris Basin. Proc Geol Assoc 108:231–255. https://doi.org/10.1016/S0016-7878(97)80031-4

    Article  Google Scholar 

  • Mortimore RN, Wood CJ, Pomerol B, Ernst G (1998) Dating the phases of the Subhercynian tectonic epoch: Late Cretaceous tectonics and eustatics in the Cretaceous basins of northern Germany compared with the Anglo-Paris Basin. Zbl Geol Paläont I 1996:1349–1401

    Google Scholar 

  • Morton AC, Hallsworth CR (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment Geol 124:3–29. https://doi.org/10.1016/S0037-0738(98)00118-3

    Article  Google Scholar 

  • Morton AC, Hurst A (1995) Correlation of sandstones using heavy minerals: an example from the Statfjord Formation of the Snorre field, northern North Sea. Geol Soc London Spec Publ 89:3–22. https://doi.org/10.1144/GSL.SP.1995.089.01.02

    Article  Google Scholar 

  • Mutterlose J, Böckel B (1998) The Barremian-Aptian interval in NW Germany: a review. Cretaceous Res 19:539–568. https://doi.org/10.1006/cres.1998.0119

    Article  Google Scholar 

  • Nádaskay R, Uličný D (2014) Genetic stratigraphy of Coniacian deltaic deposits of the northwestern part of the Bohemian Cretaceous Basin. Z Dt Ges Geowiss 165:547–575. https://doi.org/10.1127/ZDtGesGeowiss/2014/0024

    Article  Google Scholar 

  • Nádaskay R, Kochergina YV, Čech S, Švábenická L, Valečka J, Erban V, Halodová P, Čejková B (2019) Integrated stratigraphy of an offshore succession influenced by intense siliciclastic supply: Implications for Coniacian tectono-sedimentary evolution of the West Sudetic area (NW Bohemian Cretaceous Basin, Czech Republic). Cretaceous Res 102:127–159. https://doi.org/10.1016/j.cretres.2019.06.005

    Article  Google Scholar 

  • Nance RD, Gutierréz-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222. https://doi.org/10.1016/j.gr.2009.08.001

    Article  Google Scholar 

  • Niebuhr B, Prokoph A (1997) Periodic–cyclic and chaotic successions of Upper Cretaceous (Cenomanian to Campanian) pelagic sediments in the North German Basin. Cretaceous Res 18:731–750. https://doi.org/10.1006/cres.1997.0083

    Article  Google Scholar 

  • Nielsen LH (2003) Late Triassic-Jurassic development of the Danish Basin and the Fennoscandian border zone, southern Scandinavia. Geol Survey Denmark Greenland Bull 526:459–526

    Google Scholar 

  • Nielsen SB, Thomsen E, Hansen DL, Clausen OR (2005) Plate-wide stress relaxation explains European Palaeocene Basin inversions. Nature 435:195–198. https://doi.org/10.1038/nature03599

    Article  Google Scholar 

  • Nielsen SB, Stephenson R, Thomsen E (2007) Dynamics of mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations. Nature 450:1071–1074. https://doi.org/10.1038/nature06379

    Article  Google Scholar 

  • Norling E, Bergström J (1987) Mesozoic and Cenozoic tectonic evolution of Scania, southern Sweden. Tectonophysics 137:7–19. https://doi.org/10.1016/0040-1951(87)90309-X

    Article  Google Scholar 

  • Norris MS, Hallam A (1995) Facies variations across the Middle-Upper Jurassic boundary in Western Europe and the relationship to sea-level changes. Palaeogeogr Palaeocl 116:189–245. https://doi.org/10.1016/0031-0182(94)00096-Q

    Article  Google Scholar 

  • Opluštil S, Schmitz M, Kachlík V, Štamberg S (2016) Re-assessment of lithostratigraphy, biostratigraphy, and volcanic activity of the Late Paleozoic Intra-Sudetic, Krkonoše Piedmont and Mnichovo Hradiště basins (Czech Republic) based on new U-Pb CA-ID-TIMS ages. Bull Geosci 91:399–432. https://doi.org/10.3140/bull.geosci.1603

    Article  Google Scholar 

  • Pastor-Galán D, Groenewegen T, Brouwer D, Krijgsman W, Dekkers MJ (2015) One or two oroclines in the Variscan Orogen of Iberia? Implications for Pangea amalgamation. Geology 43:527–530. https://doi.org/10.1130/G36701.1

    Article  Google Scholar 

  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys. https://doi.org/10.1029/2009GC002618

    Article  Google Scholar 

  • Paul J, Wemmer K, Ahrendt H (2008) Provenance of siliciclastic sediments (Permian to Jurassic) in the Central European Basin. Z Dt Ges Geowiss 159:641–650. https://doi.org/10.1127/1860-1804/2008/0159-0641

    Article  Google Scholar 

  • Paul J, Wemmer K, Wetzel F (2009) Keuper (Late Triassic) sediments in Germany: indicators of rapid uplift of Caledonian rocks in southern Norway. Norsk Geolog Tidssk 89:193–202

    Google Scholar 

  • Pešek J (2001) Geology and deposits of Upper Paleozoic limnic basins of the Czech Republic. Czech Geological Survey, Prague

    Google Scholar 

  • Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand Geoanalytic Res 36:247–270. https://doi.org/10.1111/j.1751-908X.2012.00158.x

    Article  Google Scholar 

  • Pienkowski G, Schudack M, Bosák P, Enay R, Feldman-Olszewska A, Golonka J, Gutowski J, Herngreen JGFW, Jordan P, Krobicki M, Lathuiliere B, Leinfelder R, Michalik J, Mönnig E, Noe-Nygaard N, Pálfy J, Pint A, Rasser MW, Reisdorf AG, Schmid DU, Schweigert G, Surlyk F, Wetzel A, Wong TE (2008) Jurassic. In: McCann T (ed) Geology of Central Europe, vol 2. Mesozoic and Cenozoic. Geological Society, London, pp 823–922

    Google Scholar 

  • Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrová J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. Geol Soc Am Spec Paper 423:209–229. https://doi.org/10.1130/2007.2423(09)

    Article  Google Scholar 

  • Pivec E, Ulrych J, Höhndorf A, Rutšek J (1998) Melilititic rocks from northern Bohemia: geochemistry and mineralogy. N Jb Mineral Abh 1998:312–339

    Google Scholar 

  • Reicherter K, Froitzheim N, Jarosiński M, Badura J, Franzke HJ, Hansen M, Hübscher C, Müller R, Stackebrandt W, Voigt T, von Eynatten H, Zuchiewicz W (2008) Alpine tectonics north of the Alps. In: McCann T (ed) Geology of Central Europe, vol 2. Mesozoic and Cenozoic. Geological Society, London, pp 999–1030

    Google Scholar 

  • Scheck M, Bayer U (1999) Evolution of the northeast German Basin: inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169. https://doi.org/10.1016/S0040-1951(99)00194-8

    Article  Google Scholar 

  • Scheck-Wenderoth M, Krzywiec P, Zühlke R, Maystrenko Y, Froitzheim N (2008) Permian to Cretaceous tectonics. In: McCann T (ed) Geology of Central Europe, vol 2. Mesozoic and Cenozoic. Geological Society, London, pp 999–1030

    Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183. https://doi.org/10.1007/s00015-008-1247-3

    Article  Google Scholar 

  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Compt Rend Geosci 341:266–286. https://doi.org/10.1016/j.crte.2008.12.006

    Article  Google Scholar 

  • Scupin H (1936) Zur Palaeographie Des Sudetischen Kreidemeeres. Z Dt Ges Geowiss 88:309–325

    Google Scholar 

  • Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Hohndorf A, Muller P (1997) Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept. Geol Rundsch 86:45–63. https://doi.org/10.1007/PL00014665

    Article  Google Scholar 

  • Siebel W, Breiter K, Wendt I, Höhndorf A, Henjes-Kunst F, René M (1999) Petrogenesis of contrasting granitoid plutons in western Bohemia (Czech Republic). Mineral Petrol 65:207–235. https://doi.org/10.1007/BF01161961

    Article  Google Scholar 

  • Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36–53. https://doi.org/10.1007/s00531-002-0305-8

    Article  Google Scholar 

  • Siebel W, Shang CK, Reitter E, Rohrmüller J, Breiter K (2008) Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement: constraints from geochemistry and zircon 207Pb/206Pb chronology. J Petrol 49:1853–1872. https://doi.org/10.1093/petrology/egn049

    Article  Google Scholar 

  • Sissingh W (1998) Comparative Tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse Basin: correlation of Alpine foreland events. Tectonophysics 300:249–284. https://doi.org/10.1016/S0040-1951(98)00243-1

    Article  Google Scholar 

  • Sissingh W (2001) Tectonostratigraphy of the West Alpine Foreland: correlation of Tertiary sedimentary sequences, changes in eustatic sea-level and stress regimes. Tectonophysics 333:361–400. https://doi.org/10.1016/S0040-1951(01)00020-8

    Article  Google Scholar 

  • Sissingh W (2006) Kinematic sequence stratigraphy of the European Cenozoic Rift System and Alpine Foreland Basin: correlation with Mediterranean and Atlantic plate-boundary events. Netherlands J Geosci 85:77–129. https://doi.org/10.1017/S0016774600077921

    Article  Google Scholar 

  • Skoček V, Valečka J (1983) Paleogeography of the Late Cretaceous Quadersandstein of Central Europe. Palaeogeogr Palaeocl 44:71–92. https://doi.org/10.1016/0031-0182(83)90005-6

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon: a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005

    Article  Google Scholar 

  • Sobczyk A, Danišík M, Aleksandrowski P, Anczkiewicz A (2015) Post-Variscan cooling history of the central Western Sudetes (NE Bohemian Massif, Poland) constrained by apatite fission-track and zircon (U–Th)/He thermochronology. Tectonophysics 649:47–57. https://doi.org/10.1016/j.tecto.2015.02.021

    Article  Google Scholar 

  • Štaffen Z (2002) Chemostratigraphic determination of equivalent strata and formations in Bohemian Cretaceous Basin. Acta Montana Ser A 21:77–109

    Google Scholar 

  • Stampfli GM, von Raumer JF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. Geol Soc Am Spec Paper 364:263–280. https://doi.org/10.1130/0-8137-2364-7.263

    Article  Google Scholar 

  • Štolfová K (2004) Architectural element analysis of fluvial sandstones, Vrchlabí formation, Krkonoše Piedmont Basin, NE Czech Republic: Tectonic and climate controls. MSc. thesis, Charles University, Prague

  • Svoboda J (1964) Regional geology of the ČSSR I/2. ÚÚG,. Prague (in Czech)

  • Tásler R (1979) Geology of the Czech part of Intra-Sudetic Basin. ÚÚG, Prague (in Czech)

  • Tichomirowa M (2002) Zircon inheritance in diatexite granodiorites and its consequence on geochronology: a case study in Lusatia and Erzgebirge (Saxo-Thuringia, eastern Germany). Chem Geol 191:209–224. https://doi.org/10.1016/S0009-2541(02)00157-2

    Article  Google Scholar 

  • Tucker RM, Arter G (1987) The tectonic evolution of the North Celtic Sea and Cardigan Bay Basins with special reference to basin inversion. Tectonophysics 137:291–307. https://doi.org/10.1016/0040-1951(87)90324-6

    Article  Google Scholar 

  • Tunheng A, Hirata T (2004) Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. J Analyt Atom Spectrometry 19:932–934. https://doi.org/10.1039/B402493A

    Article  Google Scholar 

  • Uličný D (2001) Depositional systems and sequence stratigraphy of coarse-grained in a shallow-marine, strike-slip setting: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology 48:599–628. https://doi.org/10.1046/j.1365-3091.2001.00381.x

    Article  Google Scholar 

  • Uličný D, Martínek K, Grygar R (2002) Syndepositional geometry and post-depositional deformation of the Krkonoše Piedmont Basin: a preliminary model. Geolines 14:101–102

    Google Scholar 

  • Uličný D, Laurin J, Čech S (2009a) Controls on clastic sequence geometries in a shallow-marine, transtensional basin: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology 56:1077–1114. https://doi.org/10.1111/j.1365-3091.2008.01021.x

    Article  Google Scholar 

  • Uličný D, Špičáková L, Grygar R, Svobodová M, Čech S, Laurin J (2009b) Palaeodrainage systems at the basal unconformity of the Bohemian Cretaceous Basin: roles of inherited fault systems and basement lithology during the onset of basin filling. Bull Geosci 84:577–610. https://doi.org/10.3140/bull.geosci.1128

    Article  Google Scholar 

  • Uličný D, Jarvis I, Gröcke DR, Čech S, Laurin J, Olde K, Trabucho-Alexandre J, Švábenická L, Pedentchouk N (2014) A high-resolution carbon-isotope record of the Turonian stage correlated to a siliciclastic basin fill: implications for mid-Cretaceous sea-level change. Palaeogeogr Palaeocl 405:42–58. https://doi.org/10.1016/j.palaeo.2014.03.033

    Article  Google Scholar 

  • Underhill JR, Partington MA (1993) Jurassic thermal doming and deflation in the North Sea: implications of the sequence stratigraphic evidence. Geol Soc London Petrol Geol Conf Ser 4:337–345. https://doi.org/10.1144/0040337

    Article  Google Scholar 

  • Valečka J (1975) Lithology, cyclicity and genesis of basal Upper Cretaceous sediments west of Dečín. J Mineral Geol 20:409–416

    Google Scholar 

  • Valečka J (1979) Paleogeography and litofaciesdevelopment in the north-western part of the Bohemian Cretaceous Basin. J Geol Sci Geol 33:47–81

    Google Scholar 

  • Valečka J (1989) Sedimentology, stratigraphy and cyclicity of the Jizera Formation (Middle–Upper Turonian) in the Děčín area (Northern Bohemia). Bull Centr Geol Surv 64:77–90

    Google Scholar 

  • Valečka J (1994) Lithological changes in the uppermost part of the Jizera Formation NNE of Česká Kamenice and their relationships to the paleocurrent regime. Geosci Res Rep 1993:96–97

    Google Scholar 

  • Valečka J (2006) Geological map of the Czech Republic 1:25,000 with explanations, sheet 02-242 Dolní Podluží. Czech Geol Survey, Prague

    Google Scholar 

  • Valečka J (2015) The fluvial Peruc Member (middle to upper Cenomanian) of the Bohemian Cretaceous Basin near the town of Benešov nad Ploučnicí (north Bohemia). Geosci Res Rep 48:31–36. https://doi.org/10.3140/zpravy.geol.2014.33

    Article  Google Scholar 

  • Valečka J, Rejchrt M (1973) Lithology and genesis of the Coniacian flyschoid facies in the eastern part of České středohoří. J Mineral Geol 18:379–391

    Google Scholar 

  • Valečka J, Skoček V (1991) Late Cretaceous lithoevents in the Bohemian Cretaceous Basin, Czechoslovakia. Cretaceous Res 12:561–577. https://doi.org/10.1016/0195-6671(91)90031-7

    Article  Google Scholar 

  • Valečka J, Slavík J (1985) Lithological and sedimentological development on the Cretaceous stratotype localities Sutiny and Merboltice. Unpublished report, Czech Geological Survey, Prague (in Czech)

    Google Scholar 

  • Valverde-Vaquero P, Dörr W, Belka Z, Franke W, Wiszniewska J, Schastok J (2000) U-Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies. Earth Planet Sci Lett 184:225–240. https://doi.org/10.1016/S0012-821X(00)00312-5

    Article  Google Scholar 

  • van der Pluijm BA, Craddock JP, Graham BR, Harris JH (1997) Paleostress in cratonic North America: implications for deformation of continental interiors. Science 277:794–796. https://doi.org/10.1126/science.277.5327.794

    Article  Google Scholar 

  • van Wijhe DH (1987) Structural evolution of inverted basins in the Dutch offshore. Tectonophysics 137:171–219. https://doi.org/10.1016/0040-1951(87)90320-9

    Article  Google Scholar 

  • Vejbæk OV, Andersen C (2002) Post mid-cretaceous inversion tectonics in the Danish Central Graben: regionally synchronous tectonic events? Bull Geol Soc Denmark 49:129–144

    Google Scholar 

  • Vejbaek OV, Andersen C, Dusa M, Herngreen W, Krabbe H, Leszczynski K, Lott GK, Mutterlose J, van der Molen AS (2010) Cretaceous. In: Doornenbal H, Stevenson A (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications, Houten, pp 195–209

    Google Scholar 

  • Ventura B, Lisker F (2003) Long-term landscape evolution of the northeastern margin of the Bohemian Massif: apatite fission-track data from the Erzgebirge (Germany). Int J Earth Sci 92:691–700. https://doi.org/10.1007/s00531-003-0344-9

    Article  Google Scholar 

  • Voigt T (1994) Faziesentwicklung und Ablagerungssequenzen am Rand eines Epikontinentalmeeres: die Sedimentationsgeschichte der sächsischen Kreide. Dissertation, TU Bergakademie Freiberg

  • Voigt T (1998) Entwicklung und Architektur einer fluviatilen Talfüllung: die Niederschöna Formation im Sächsischen Kreidebecken. Abh Staatl Mus Mineral Geol Dresden 43–44:121–139

    Google Scholar 

  • Voigt T (2009) Die Lausitzer-Riesengebirgs-Antiklinalzone als kreidezeitliche inversionsstruktur: geologische Hinweise aus den umgebenden Kreidebecken. Z Geol Wiss 37:15–39

    Google Scholar 

  • Voigt T, von Eynatten H, Franzke HJ (2004) Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany). Acta Geol Polonica 54:673–694

    Google Scholar 

  • Voigt T, Wiese F, von Eynatten H, Franzke HJ, Gaupp R (2006) Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Z Dt Ges Geowiss 157:203–243. https://doi.org/10.1127/1860-1804/2006/0157-0203

    Article  Google Scholar 

  • Voigt S, Wagreich M, Surlyk F, Walaszczyk I, Uličný D, Čech S, Voigt T, Wiese F, Wilmsen M, Niebuhr B, Reich M, Funk H, Michalík J, Jagt JWM, Felder PJ, Schulp AS (2008) Cretaceous. In: McCann T (ed) Geology of Central Europe, vol 2. Mesozoic and Cenozoic. Geological Society, London, pp 923–997

    Google Scholar 

  • von Eynatten H, Voigt T, Meier A, Franzke HJ, Gaupp R (2008) Provenance of Cretaceous clastics in the Subhercynian Basin: constraints to exhumation of the Harz Mountains and timing of inversion tectonics in Central Europe. Int J Earth Sci 97:1315–1330. https://doi.org/10.1007/s00531-007-0212-0

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  • Wiest JD, Jacobs J, Ksienzyk AK, Fossen H (2018) Sveconorwegian vs. Caledonian orogenesis in the Eastern Øygarden Complex, SW Norway: geochronology, structural constraints and tectonic implications. Precambrian Res 305:1–18. https://doi.org/10.1016/j.precamres.2017.11.020

    Article  Google Scholar 

  • Wilmsen M, Niebuhr B, Chellouche P, Pürner T, Kling M (2010) Facies pattern and sea-level dynamics of the early Late Cretaceous transgression: a case study from the lower Danubian Cretaceous Group (Bavaria, southern Germany). Facies 56:483–507. https://doi.org/10.1007/s10347-010-0224-2

    Article  Google Scholar 

  • Winchester JA, Pharaoh TC, Verniers J, Ioane D, Seghedi A (2006) Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. Geol Soc London Mem 32:232–332. https://doi.org/10.1144/GSL.MEM.2006.032.01.19

    Article  Google Scholar 

  • Žák J, Sláma J (2018) How far did the Cadomian ‘terranes’ travel from Gondwana during early Palaeozoic? A critical reappraisal based on detrital zircon geochronology. Int Geol Rev 60:319–338. https://doi.org/10.1080/00206814.2017.1334599

    Article  Google Scholar 

  • Žák J, Verner K, Finger F, Faryad SW, Chlupáčová M, Veselovský F (2011) The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121:25–40. https://doi.org/10.1016/j.lithos.2010.10.002

    Article  Google Scholar 

  • Žák J, Verner K, Sláma J, Kachlík V, Chlupáčová M (2013) Multistage magma emplacement and progressive strain accumulation in the shallow-level Krkonoše-Jizera plutonic complex, Bohemian Massif. Tectonics 32:1493–1512. https://doi.org/10.1002/tect.20088

    Article  Google Scholar 

  • Žák J, Svojtka M, Opluštil S (2018) Topographic inversion and changes in the sediment routing systems in the Variscan orogenic belt as revealed by detrital zircon and monazite U-Pb geochronology in post-collisional continental basins. Sediment Geol 377:63–81. https://doi.org/10.1016/j.sedgeo.2018.09.008

    Article  Google Scholar 

  • Żelaźniewicz A, Dörr W, Bylina P, Franke W, Haack U, Heinisch H, Schastok J, Grandmontagne K, Kulicki C (2004) The eastern continuation of the Cadomian orogeny: U-Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and northern Czech Republic. Int J Earth Sci 93:773–781. https://doi.org/10.1007/s00531-004-0418-3

    Article  Google Scholar 

  • Żelaźniewicz A, Fanning CM, Achramowicz S (2009) Refining the granite, gneiss and schist interrelationships within the Lusatian-Izera Massif, West Sudetes, using SHRIMP U-Pb zircon analyses and new geologic data. Geol Sudetica 41:67–84

    Google Scholar 

  • Zieger J, Linnemann U, Hofmann M, Gärtner A, Marko L, Gerdes A (2018) A new U-Pb LA-ICP-MS age of the Rumburk Granite (Lausitz Block, Saxo-Thuringian Zone): constraints for a magmatic event in the Upper Cambrian. Intl J Earth Sci 107:933–953. https://doi.org/10.1007/s00531-017-1511-8

    Article  Google Scholar 

  • Zieger J, Bittner L, Gärtner A, Hofmann M, Gerdes A, Marko L, Linnemann U (2019) U-Pb ages of magmatic and detrital zircon of the Döhlen Basin: geological history of a Permian strike-slip basin in the Elbe Zone (Germany). Int J Earth Sci 108:887–910. https://doi.org/10.1007/s00531-019-01683-0

    Article  Google Scholar 

  • Ziegler PA (1975) The geological evolution of the North Sea area in the tectonic framework of North Western Europe. Norges Geol Unders 316:1–27

    Google Scholar 

  • Ziegler PA (1987) Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland: a geodynamic model. Tectonophysics 137:389–420. https://doi.org/10.1016/0040-1951(87)90330-1

    Article  Google Scholar 

  • Ziegler PA (1988) Evolution of the Arctic-North Atlantic and the western Tethys. AAPG Mem. https://doi.org/10.1306/M43478

    Article  Google Scholar 

  • Ziegler PA (1989) Evolution of Laurassia, a Study of Late Paleozoic Plate Tectonics. Kluwer, Dordrecht

    Google Scholar 

  • Ziegler PA (1990a) Geological Atlas of Western and Central Europe, 2nd edn. Shell Internationale Petroleum, Mijdrecht

    Google Scholar 

  • Ziegler PA (1990b) Collision related intra-plate compression deformations in Western and Central Europe. J Geodyn 11:357–388. https://doi.org/10.1016/0264-3707(90)90017-O

    Article  Google Scholar 

  • Ziegler PA (1990c) Tectonic and palaeogeographic development of the North Sea rift system. In: Gibbs AD, Blundell DJ (eds) Tectonic evolution of the North Sea rifts. Oxford University Press, New York, pp 1–36

    Google Scholar 

  • Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan massifs in the Alpine Foreland: timing and controlling mechanisms. Global Planet Change 58:237–269. https://doi.org/10.1016/j.gloplacha.2006.12.004

    Article  Google Scholar 

  • Ziegler PA, Cloetingh S, van Wees JD (1995) Dynamics of intra-plate compressional deformation: the Alpine Foreland and other examples. Tectonophysics 252:7–59. https://doi.org/10.1016/0040-1951(95)00102-6

    Article  Google Scholar 

  • Ziegler PA, van Wees JD, Cloetingh S (1998) Mechanical controls on collision-related compressional intraplate deformation. Tectonophysics 300:103–129. https://doi.org/10.1016/S0040-1951(98)00236-4

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Aitor Cambeses and an anonymous reviewer for their constructive reviews and Axel Gerdes and Wolf-Christian Dullo for careful editorial handling. We also thank František Veselovský and Martin Štrba for heavy mineral and zircon separations as well as Bedřich Mlčoch, Zuzana Tasáryová, Vladimír Prouza, Olaf Tietz, and Mandy Hofmann for discussions. This work was supported by the Czech Science Foundation through Grant No. 16-11500S (to Jiří Žák). The institutional support was provided by the Charles University through projects PROGRES Q45 and Center for Geosphere Dynamics UNCE/SCI/006. Field work and sampling were funded by the project No. 100267011 ʽResiBil—transboundary water resource management in the context of climate changeʼ sponsored by the European Union. Jiří Sláma was supported by the Academy of Sciences of the Czech Republic through institutional support RVO 67985831. Tamara Sidorinová acknowledges the Czech Geological Survey project 322400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Nádaskay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 4753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nádaskay, R., Žák, J., Sláma, J. et al. Deciphering the Late Paleozoic to Mesozoic tectono sedimentary evolution of the northern Bohemian Massif from detrital zircon geochronology and heavy mineral provenance. Int J Earth Sci (Geol Rundsch) 108, 2653–2681 (2019). https://doi.org/10.1007/s00531-019-01781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01781-z

Keywords

Navigation