Skip to main content
Log in

Magnetic cobalt oxide nanosheets: green synthesis and in vitro cytotoxicity

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Cobalt oxide nanoparticles were prepared via green chemistry route and fully characterized by Field Emission Scanning Electron Microscope (FESEM), Energy-dispersive X-ray spectroscopy (EDAX), X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and Transmission electron microscopy (TEM) analyses; the CoO and Co3O4 nanoparticles, in sheet-shaped cobalt oxide form, ensued simultaneously in one step. The varying concentrations of NPs were analyzed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test on the cancer cell line (U87) which revealed that with increasing concentration of cobalt oxide nanoparticles, the survival rate of U87 tumor cells decreases; IC50 of nanoparticles being ~ 55 µg/ml−1.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdel-Rahman LH, Abu-Dief AM, El-Khatib RM, Abdel-Fatah SM (2016) Sonochemical synthesis, DNA binding, antimicrobial evaluation and in vitro anticancer activity of three new nano-sized Cu (II), Co (II) and Ni (II) chelates based on tri-dentate NOO imine ligands as precursors for metal oxides. J Photochem Photobiol B: Biology 162:298–308

    Article  CAS  Google Scholar 

  2. Aflatoonian MR et al (2019) Associated-risk determinants for anthroponotic cutaneous leishmaniasis treated with meglumine antimoniate: a cohort study in Iran. PLoS Neglected Tropical Dis 13:e0007423

    Article  Google Scholar 

  3. Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A (2017) Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicol Vitro 40:94–101

    Article  CAS  Google Scholar 

  4. Allaedini G, Muhammad A (2013) Study of influential factors in synthesis and characterization of cobalt oxide nanoparticles. J Nanostruct Chem 3:77

    Article  Google Scholar 

  5. Bartůněk V, Huber Š, Sedmidubský D, Sofer Z, Šimek P, Jankovský O (2014) CoO and Co3O4 nanoparticles with a tunable particle size. Ceramics Int 40:12591–12595

    Article  Google Scholar 

  6. Bolundut L, Pascuta P, Culea E, Bosca M, Pop L, Stefan R (2020) Spectroscopic study of some new cobalt-doped tellurite glass–ceramics. J Mater Sci 55:9962–9971

    Article  CAS  Google Scholar 

  7. Chattopadhyay S, Dash SK, Ghosh T, Das D, Pramanik P, Roy S (2013) Surface modification of cobalt oxide nanoparticles using phosphonomethyl iminodiacetic acid followed by folic acid: a biocompatible vehicle for targeted anticancer drug delivery. Cancer Nanotechnol 4:103

    Article  Google Scholar 

  8. Farshchi HK, Azizi M, Jaafari MR, Nemati SH, Fotovat A (2018) Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines. Biocatalysis Agric Biotechnol 16:54–62

    Article  Google Scholar 

  9. Ferrier R (1968) KW Andrews, DJ Dyson, SR Keown, Interpretation of electron diffraction patterns, Hilger and Watts (1967), 188pp.£ 5.5 s. Elsevier

  10. Foroughi MM, Jahani S, Rajaei M (2019) Facile fabrication of 3D dandelion-Like cobalt oxide nanoflowers and its functionalization in the first electrochemical sensing of oxymorphone: evaluation of kinetic parameters at the surface electrode. J Electrochem Soc 166:B1300–B1311. https://doi.org/10.1149/2.0511914jes

    Article  CAS  Google Scholar 

  11. Gholami L, Kazemi Oskuee R, Tafaghodi M, Ramezani Farkhani A, Darroudi M (2018) Green facile synthesis of low-toxic superparamagnetic iron oxide nanoparticles (SPIONs) and their cytotoxicity effects toward Neuro2A and HUVEC cell lines. Ceramics Int. https://doi.org/10.1016/j.ceramint.2018.02.137

    Article  Google Scholar 

  12. Gražulis S et al (2009) Crystallography open database–an open-access collection of crystal structures. J Appl Crystallogr 42:726–729

    Article  Google Scholar 

  13. Imran M, Khan MZ, Waqee‑Ur‑Rehman M, Ullah A, Ahmed S, Nadeem K, Mumtaz M Role of Co3O4 Nanoparticles Addition in Infield Superconducting Properties of CuTl‑1223 Phase

  14. Iravani S, Varma RS (2020) Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chem 22:2643–2661

    Article  CAS  Google Scholar 

  15. Khan AU et al (2018) An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J Photochem Photobiol B: Biol 183:367–373. https://doi.org/10.1016/j.jphotobiol.2018.05.007

    Article  CAS  Google Scholar 

  16. Khan AU et al (2016) Longan fruit juice mediated synthesis of uniformly dispersed spherical AuNPs: cytotoxicity against human breast cancer cell line MCF-7, antioxidant and fluorescent properties. RSC Adv 6:23775–23782. https://doi.org/10.1039/C5RA27100B

    Article  CAS  Google Scholar 

  17. Khan FU et al (2016) Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. J Photochem Photobiol, B 164:344–351. https://doi.org/10.1016/j.jphotobiol.2016.09.042

    Article  CAS  Google Scholar 

  18. Khan S, Ansari AA, Khan AA, Ahmad R, Al-Obaid O, Al-Kattan W (2015) vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles JBIC. J Biol Inorg Chem 20:1319–1326

    Article  CAS  Google Scholar 

  19. Khan ZUH et al (2017) Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic Azo dyes using AuNPs/GC as modified paste electrode. J Alloy Compd 725:869–876. https://doi.org/10.1016/j.jallcom.2017.07.222

    Article  CAS  Google Scholar 

  20. Khatami M, Iravani S, Varma RS, Mosazade F, Darroudi M, Borhani F (2019) Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-019-02193-8

    Article  PubMed  Google Scholar 

  21. Krishnan P et al (2017) Efficiency of newly formulated camptothecin with β-cyclodextrin-EDTA-Fe3O4 nanoparticle-conjugated nanocarriers as an anti-colon cancer (HT29) drug. Sci Rep 7:1–16

    Article  Google Scholar 

  22. Liu B, Zhang X, Shioyama H, Mukai T, Sakai T, Xu Q (2010) Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. J Power Sources 195:857–861

    Article  CAS  Google Scholar 

  23. Lvov Y, Munge B, Giraldo O, Ichinose I, Suib SL, Rusling JF (2000) Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption. Langmuir 16:8850–8857

    Article  CAS  Google Scholar 

  24. Makhlouf SA, Bakr ZH, Aly KI, Moustafa M (2013) Structural, electrical and optical properties of Co3O4 nanoparticles. Superlattices Microstruct 64:107–117

    Article  CAS  Google Scholar 

  25. Manouchehri I, Kameli P, Salamati H (2011) Facile synthesis of Co3O4/CoO nanoparticles by thermal treatment of ball-milled precursors. J Superconductivity Novel Magn 24:1907–1910. https://doi.org/10.1007/s10948-011-1141-5

    Article  CAS  Google Scholar 

  26. Matinise N, Mayedwa N, Fuku X, Mongwaketsi N, Maaza M (2018) Green synthesis of cobalt (II, III) oxide nanoparticles using Moringa Oleifera natural extract as high electrochemical electrode for supercapacitors. In: AIP Conference Proceedings. vol 1. AIP Publishing, p 040005

  27. Montazerozohori M, Masoudiasl A, Farokhiyani S, Joohari S, McArdle P (2017) Sonochemical synthesis of a new cobalt (II) complex: crystal structure, thermal behavior, Hirshfeld surface analysis and its usage as precursor for preparation of CoO/Co3O4 nanoparticles. Ultrasonics Sonochem 38:134–144

    Article  CAS  Google Scholar 

  28. Pawar SA, Patil DS, Shin JC (2017) Hexagonal sheets of Co3O4 and Co3O4-Ag for high-performance electrochemical supercapacitors. J Industrial Eng Chem 54:162–173

    Article  CAS  Google Scholar 

  29. Prasad C, Sreenivasulu K, Gangadhara S, Venkateswarlu P (2017) Bio inspired green synthesis of Ni/Fe3O4 magnetic nanoparticles using Moringa oleifera leaves extract: a magnetically recoverable catalyst for organic dye degradation in aqueous solution. J Alloys Compounds 700:252–258. https://doi.org/10.1016/j.jallcom.2016.12.363

    Article  CAS  Google Scholar 

  30. Prathap M, Poonkuzhali K, Berlina MM, Hemalatha P, Paradesi D (2020) Synthesis and characterization of sulfonated poly (ether ether ketone)/zinc cobalt oxide composite membranes for fuel cell applications. High Performance Polymers:0954008320922296

  31. Rajaei M, Foroughi MM, Jahani S, Shahidi Zandi M, Hassani Nadiki H (2019) Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J Mol Liquids 284:462–472. https://doi.org/10.1016/j.molliq.2019.03.135

    Article  CAS  Google Scholar 

  32. Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M (2019) A review on metal-organic frameworks: synthesis and applications TrAC. Trends Anal Chem 118:401–425. https://doi.org/10.1016/j.trac.2019.06.007

    Article  CAS  Google Scholar 

  33. Salimi A, Hallaj R, Soltanian S (2007) Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity. Biophys Chem 130:122–131

    Article  CAS  Google Scholar 

  34. Sargazi G, Afzali D, Ghafainazari A, Saravani H (2014) Rapid synthesis of cobalt metal organic framework. J Inorg Organomet Polym Mater 24:786–790. https://doi.org/10.1007/s10904-014-0042-z

    Article  CAS  Google Scholar 

  35. Sargazi G, Khajeh Ebrahimi A, Afzali D, Badoei-dalfard A, Malekabadi S, Karami Z (2019) Fabrication of PVA/ZnO fibrous composite polymer as a novel sorbent for arsenic removal: design and a systematic study. Polym Bull 76:5661–5682. https://doi.org/10.1007/s00289-019-02677-3

    Article  CAS  Google Scholar 

  36. Setoudeh N, Jahani S, Kazemipour M, Foroughi MM, Hassani Nadiki H (2020) Zeolitic imidazolate frameworks and cobalt-tannic acid nanocomposite modified carbon paste electrode for simultaneous determination of dopamine, uric acid, acetaminophen and tryptophan: Investigation of kinetic parameters of surface electrode and its analytical performance. J Electroanalytical Chem 863:114045. https://doi.org/10.1016/j.jelechem.2020.114045

    Article  CAS  Google Scholar 

  37. Shaikh HM, Nadavala SK, Mahmood A (2020) Synthesis of carbon nanoparticles/zinc oxide/zinc cobalt oxide composite and its electrochemical properties. Ceramics International

  38. Wahab R, Ahmad N, Alam M, Ahmad J The development of cobalt oxide nanoparticles based electrode to elucidate the rapid sensing of nitrophenol. Mater Sci Eng, B265:114994

  39. Wang J et al (2015) Synergistic effect between metal–nitrogen–carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew Chem 127:10676–10680

    Article  Google Scholar 

  40. Wang Z, Fang C, Megharaj M (2014) Characterization of iron–polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain Chem Eng 2:1022–1025. https://doi.org/10.1021/sc500021n

    Article  CAS  Google Scholar 

  41. Zhao X, Veintemillas-Verdaguer S, Bomati-Miguel O, Morales M, Xu H (2005) Thermal history dependence of the crystal structure of Co fine particles. Phys Rev B 71:024106

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Bam and Shahid Beheshti University of Medical Sciences and, the VEGA Agency under the Contract no. 2/0140/20. Electron microscopy at the Institute of Macromolecular Chemistry was supported through Grants 17-05007S (Czech Science Foundation) and POLYMAT LO1507 (Ministry of Education, Youth and Sports of the CR, program NPU I).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Fariba Borhani or Simin Soltaninezhad.

Ethics declarations

Conflict of interest

The authors confirm that the content of this article involves no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeisi, M., Alijani, H.Q., Peydayesh, M. et al. Magnetic cobalt oxide nanosheets: green synthesis and in vitro cytotoxicity. Bioprocess Biosyst Eng 44, 1423–1432 (2021). https://doi.org/10.1007/s00449-021-02518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02518-6

Keywords

Navigation