Skip to main content

Advertisement

Log in

Polymer materials as promoters/inhibitors of amyloid fibril formation

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polymers are omnipresent materials that are widely used in medicine, e.g., as construction materials for medical devices or as polymer nanoparticle drug delivery systems. Therefore, their possible effects on biomolecules, such as lipids, proteins, and other molecules, present in the human body must be examined. This review addresses the effects of polymer materials (such as dendrimers, polysaccharides) on the process of amyloid fibril formation. Amyloidoses are very serious diseases that are characterized by amyloid deposition in various organs and tissues, causing their dysfunction. The treatment of amyloidoses, such as Alzheimer’s disease (AD), using polymer materials is a challenge. Studies aiming to elucidate the effects of polymers on the process of amyloid fibril formation are therefore also of key importance for understanding the process of amyloid fibril formation and amyloidoses in general.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chuang E, Hori AM, Hesketh CD, Shorter J (2018) Amyloid assembly and disassembly. J Cell Sci 131:jcs189928. https://doi.org/10.1242/jcs.189928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Radford SE, Weissman JS (2012) Special issue: the molecular and cellular mechanisms of amyloidosis. J Mol Biol 421:139–141. https://doi.org/10.1016/j.jmb.2012.05.042

    Article  CAS  PubMed  Google Scholar 

  3. Sideras K, Gertz MA (2009) Chapter 1 amyloidosis. In: Advances in clinical chemistry. pp 1–44

  4. Sipe JD, Benson MD, Buxbaum JN, Ikeda SI, Merlini G, Saraiva MJM, Westermark P (2010) Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid 17:101–104. https://doi.org/10.3109/13506129.2010.526812

    Article  CAS  PubMed  Google Scholar 

  5. Serpell LC, Sunde M, Benson MD, Tennent GA, Pepys MB, Fraser PE (2000) The protofilament substructure of amyloid fibrils. J Mol Biol 300:1033–1039. https://doi.org/10.1006/jmbi.2000.3908

    Article  CAS  PubMed  Google Scholar 

  6. Ionescu-Zanetti C, Khurana R, Gillespie JR, Petrick JS, Trabachino LC, Minert LJ, Carter SA, Fink AL (1999) Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy. Proc Natl Acad Sci 96:13175–13179. https://doi.org/10.1073/pnas.96.23.13175

    Article  CAS  PubMed  Google Scholar 

  7. Taglialegna A, Lasa I, Valle J (2016) Amyloid structures as biofilm matrix scaffolds. J Bacteriol 198:2579–2588. https://doi.org/10.1128/JB.00122-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holubová M, Hrubý M (2016) Terapeutika amyloidóz. Chem List 110:851–859

    Google Scholar 

  9. Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R (2017) Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 46:4661–4708. https://doi.org/10.1039/C6CS00542J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheung H-Y, Lau K-T, Ho M-P, Mosallam A (2009) Study on the mechanical properties of different silkworm silk fibers. J Compos Mater 43:2521–2531. https://doi.org/10.1177/0021998309345347

    Article  CAS  Google Scholar 

  11. Engineering ToolBox (2003) Young’s modulus - tensile and yield strength for common materials. https://www.engineeringtoolbox.com/young-modulus-d_417.html. Accessed 27 Feb 2020

  12. Hori Y, Hashimoto T, Nomoto H, Hyman BT, Iwatsubo T (2015) Role of apolipoprotein E in β-amyloidogenesis: isoform-specific effects on protofibril to fibril conversion of Aβ in vitro and brain Aβ deposition in vivo. J Biol Chem 290:15163–15174. https://doi.org/10.1074/jbc.M114.622209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bemporad F, Chiti F (2013) Pathways of amyloid formation. Amyloid fibrils and prefibrillar aggregates. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 151–166

    Chapter  Google Scholar 

  14. Arosio P, Knowles TPJ, Linse S (2015) On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 17:7606–7618. https://doi.org/10.1039/c4cp05563b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iannuzzi C, Maritato R, Irace G, Sirangelo I (2013) Misfolding and amyloid aggregation of apomyoglobin. Int J Mol Sci 14:14287–14300. https://doi.org/10.3390/ijms140714287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hurshman AR, White JT, Powers ET, Kelly JW (2004) Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry 43:7365–7381. https://doi.org/10.1021/bi049621l

    Article  CAS  PubMed  Google Scholar 

  17. Gazit E (2005) Mechanisms of amyloid fibril self-assembly and inhibition. FEBS J 272:5971–5978. https://doi.org/10.1111/j.1742-4658.2005.05022.x

    Article  CAS  PubMed  Google Scholar 

  18. Marshall KE, Morris KL, Charlton D, O’Reilly N, Lewis L, Walden H, Serpell LC (2011) Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability. Biochemistry 50:2061–2071. https://doi.org/10.1021/bi101936c

    Article  CAS  PubMed  Google Scholar 

  19. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901

    Article  CAS  Google Scholar 

  20. Mülhaupt R (2004) Hermann Staudinger and the origin of macromolecular chemistry. Angew Chem Int Ed 43:1054–1063. https://doi.org/10.1002/anie.200330070

    Article  Google Scholar 

  21. Nimesh S (2013) Dendrimers. In: Gene therapy. Elsevier, pp 259–285

  22. Abbasi E, Aval SF, Akbarzadeh A et al (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:1–10

    Article  CAS  Google Scholar 

  23. Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Zaldívar-Lelo de Larrea G, Sosa-Ferreyra CF, Mercado-Curiel RF, Manríquez J, Bustos E (2014) Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014:1–19. https://doi.org/10.1155/2014/507273

    Article  CAS  Google Scholar 

  24. Klajnert B, Stanisławska L, Bryszewska M, Pałecz B (2003) Interactions between PAMAM dendrimers and bovine serum albumin. Biochim Biophys Acta, Proteins Proteomics 1648:115–126. https://doi.org/10.1016/S1570-9639(03)00117-1

    Article  CAS  Google Scholar 

  25. Klajnert B, Cortijo-Arellano M, Cladera J, Bryszewska M (2006) Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochem Biophys Res Commun 345:21–28. https://doi.org/10.1016/j.bbrc.2006.04.041

    Article  CAS  PubMed  Google Scholar 

  26. Klajnert B, Cortijo-Arellano M, Bryszewska M, Cladera J (2006) Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer’s and prion diseases. Biochem Biophys Res Commun 339:577–582. https://doi.org/10.1016/j.bbrc.2005.11.053

    Article  CAS  PubMed  Google Scholar 

  27. Sengupta U, Nilson AN, Kayed R (2016) The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49. https://doi.org/10.1016/j.ebiom.2016.03.035

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rekas A, Lo V, Gadd GE, Cappai R, Yun SI (2009) PAMAM dendrimers as potential agents against fibrillation of α-synuclein, a Parkinson’s disease-related protein. Macromol Biosci 9:230–238. https://doi.org/10.1002/mabi.200800242

    Article  CAS  PubMed  Google Scholar 

  29. Inoue M, Ueda M, Higashi T, Anno T, Fujisawa K, Motoyama K, Mizuguchi M, Ando Y, Jono H, Arima H (2019) Therapeutic potential of polyamidoamine dendrimer for amyloidogenic transthyretin amyloidosis. ACS Chem Neurosci 10:2584–2590. https://doi.org/10.1021/acschemneuro.9b00059

    Article  CAS  PubMed  Google Scholar 

  30. Gurzov EN, Wang B, Pilkington EH, Chen P, Kakinen A, Stanley WJ, Litwak SA, Hanssen EG, Davis TP, Ding F, Ke PC (2016) Inhibition of hIAPP amyloid aggregation and pancreatic β-cell toxicity by OH-terminated PAMAM dendrimer. Small 12:1615–1626. https://doi.org/10.1002/smll.201502317

    Article  CAS  PubMed  Google Scholar 

  31. Heegaard PMH, Pedersen HG, Flink J, Boas U (2004) Amyloid aggregates of the prion peptide PrP106-126 are destabilised by oxidation and by the action of dendrimers. FEBS Lett 577:127–133. https://doi.org/10.1016/j.febslet.2004.09.073

    Article  CAS  PubMed  Google Scholar 

  32. Supattapone S, Wille H, Uyechi L, Safar J, Tremblay P, Szoka FC, Cohen FE, Prusiner SB, Scott MR (2001) Branched polyamines cure prion-infected neuroblastoma cells. J Virol 75:3453–3461. https://doi.org/10.1128/jvi.75.7.3453-3461.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klementieva O, Benseny-Cases N, Gella A, Appelhans D, Voit B, Cladera J (2011) Dense shell glycodendrimers as potential nontoxic anti-amyloidogenic agents in Alzheimer’s disease. Amyloid–dendrimer aggregates morphology and cell toxicity. Biomacromolecules 12:3903–3909. https://doi.org/10.1021/bm2008636

    Article  CAS  PubMed  Google Scholar 

  34. Klementieva O, Aso E, Filippini D, Benseny-Cases N, Carmona M, Juvés S, Appelhans D, Cladera J, Ferrer I (2013) Effect of poly(propylene imine) glycodendrimers on β-amyloid aggregation in vitro and in APP/PS1 transgenic mice, as a model of brain amyloid deposition and Alzheimer’s disease. Biomacromolecules 14:3570–3580. https://doi.org/10.1021/bm400948z

    Article  CAS  PubMed  Google Scholar 

  35. Aso E, Martinsson I, Appelhans D, Effenberg C, Benseny-Cases N, Cladera J, Gouras G, Ferrer I, Klementieva O (2019) Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomed Nanotechnol Biol Med 17:198–209. https://doi.org/10.1016/j.nano.2019.01.010

    Article  CAS  Google Scholar 

  36. Laumann K, Boas U, Larsen HM, Heegaard PMH, Bergström AL (2015) Urea and thiourea modified polypropyleneimine dendrimers clear intracellular α-synuclein aggregates in a human cell line. Biomacromolecules 16:116–124. https://doi.org/10.1021/bm501244m

    Article  CAS  PubMed  Google Scholar 

  37. McCarthy JM, Rasines Moreno B, Filippini D et al (2013) Influence of surface groups on poly(propylene imine) dendrimers antiprion activity. Biomacromolecules 14:27–37. https://doi.org/10.1021/bm301165u

    Article  CAS  PubMed  Google Scholar 

  38. Sorokina SA, Stroylova YY, Tishina SA, Shifrina ZB, Muronetz VI (2019) Promising anti-amyloid behavior of cationic pyridylphenylene dendrimers: role of structural features and mechanism of action. Eur Polym J 116:20–29. https://doi.org/10.1016/j.eurpolymj.2019.03.053

    Article  CAS  Google Scholar 

  39. Popova E, Khamidova D, Neelov I, Komilov F (2018) Lysine dendrimers and their complexes with therapeutic and amyloid peptides: computer simulation. In: Dendrimers - fundamentals and applications. InTech

  40. Sorokina SA, Stroylova YY, Shifrina ZB, Muronetz VI (2016) Disruption of amyloid prion protein aggregates by cationic pyridylphenylene dendrimers. Macromol Biosci 16:266–275. https://doi.org/10.1002/mabi.201500268

    Article  CAS  PubMed  Google Scholar 

  41. Milowska K, Szwed A, Mutrynowska M, Gomez-Ramirez R, de la Mata FJ, Gabryelak T, Bryszewska M (2015) Carbosilane dendrimers inhibit α-synuclein fibrillation and prevent cells from rotenone-induced damage. Int J Pharm 484:268–275. https://doi.org/10.1016/j.ijpharm.2015.02.066

    Article  CAS  PubMed  Google Scholar 

  42. Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290. https://doi.org/10.1016/j.nbd.2009.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Milowska K, Grochowina J, Katir N, el Kadib A, Majoral JP, Bryszewska M, Gabryelak T (2013) Viologen-phosphorus dendrimers inhibit α-synuclein fibrillation. Mol Pharm 10:1131–1137. https://doi.org/10.1021/mp300636h

    Article  CAS  PubMed  Google Scholar 

  44. Milowska K, Gabryelak T, Bryszewska M, Caminade AM, Majoral JP (2012) Phosphorus-containing dendrimers against α-synuclein fibril formation. Int J Biol Macromol 50:1138–1143. https://doi.org/10.1016/j.ijbiomac.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen PT, Sharma R, Rej R, de Carufel CA, Roy R, Bourgault S (2016) Low generation anionic dendrimers modulate islet amyloid polypeptide self-assembly and inhibit pancreatic β-cell toxicity. RSC Adv 6:76360–76369. https://doi.org/10.1039/c6ra15373a

    Article  CAS  Google Scholar 

  46. Baldrighi M, Trusel M, Tonini R, Giordani S (2016) Carbon nanomaterials interfacing with neurons: an in vivo perspective. Front Neurosci 10:250

    Article  Google Scholar 

  47. Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496. https://doi.org/10.1016/j.biomaterials.2007.08.050

    Article  CAS  PubMed  Google Scholar 

  48. Wang M, Kakinen A, Pilkington EH, Davis TP, Ke PC (2017) Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater Sci 5:485–493. https://doi.org/10.1039/C6BM00764C

    Article  CAS  PubMed  Google Scholar 

  49. Palmal S, Jana NR, Jana NR (2014) Inhibition of amyloid fibril growth by nanoparticle coated with histidine-based polymer. J Phys Chem C 118:21630–21638. https://doi.org/10.1021/jp505613g

    Article  CAS  Google Scholar 

  50. Bobylev AG, Shpagina MD, Bobyleva LG, Okuneva AD, Piotrovsky LB, Podlubnaya ZA (2012) Antiamyloid properties of fullerene C60 derivatives. Biophysics (Oxf) 57:300–304. https://doi.org/10.1134/S0006350912030050

    Article  CAS  Google Scholar 

  51. Bobylev AG, Marsagishvili LG, Podlubnaya ZA (2010) Fluorescence analysis of the action of soluble derivatives of fullerene C60 on amyloid fibrils of the brain peptide Aβ(1–42). Biophysics (Oxf) 55:699–702. https://doi.org/10.1134/S0006350910050027

    Article  Google Scholar 

  52. Marsagishvili LG, Bobylev AG, Shpagina MD, Troshin PA, Podlubnaya ZA (2009) Effect of fullerenes C60 on X-protein amyloids. Biophysics (Oxf) 54:135–138. https://doi.org/10.1134/S000635090902002X

    Article  Google Scholar 

  53. Wei D, Qian W (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B: Biointerfaces 62:136–142. https://doi.org/10.1016/j.colsurfb.2007.09.030

    Article  CAS  PubMed  Google Scholar 

  54. Sen S, Konar S, Das B, Pathak A, Dhara S, Dasgupta S, DasGupta S (2016) Inhibition of fibrillation of human serum albumin through interaction with chitosan-based biocompatible silver nanoparticles. RSC Adv 6:43104–43115. https://doi.org/10.1039/c6ra05129d

    Article  CAS  Google Scholar 

  55. McLaurin J, Franklin T, Zhang X, Deng J, Fraser PE (1999) Interactions of Alzheimer amyloid-β peptides with glycosaminoglycans. Eur J Biochem 266:1101–1110. https://doi.org/10.1046/j.1432-1327.1999.00957.x

    Article  CAS  PubMed  Google Scholar 

  56. Cohlberg JA, Li J, Uversky VN, Fink AL (2002) Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from α-synuclein in vitro. Biochemistry 41:1502–1511. https://doi.org/10.1021/bi011711s

    Article  CAS  Google Scholar 

  57. Stewart KL, Radford SE (2017) Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophys Rev 9:405–419. https://doi.org/10.1007/s12551-017-0271-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dı́az-Nido J, Wandosell F, Avila J (2002) Glycosaminoglycans and β-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides 23:1323–1332. https://doi.org/10.1016/S0196-9781(02)00068-2

    Article  PubMed  Google Scholar 

  59. Magnus JH, Stenstad T (1997) Proteoglycans and the extracellular matrix in amyloidosis. Amyloid 4:121–134. https://doi.org/10.3109/13506129708995282

    Article  CAS  Google Scholar 

  60. Valle-Delgado JJ, Alfonso-Prieto M, Groot NS, Ventura S, Samitier J, Rovira C, Fernàndez-Busquets X (2010) Modulation of Aβ 42 fìbrillogenesis by glycosaminoglycan structure. FASEB J 24:4250–4261. https://doi.org/10.1096/fj.09-153551

    Article  CAS  PubMed  Google Scholar 

  61. Radko SP, Khmeleva SA, Mantsyzov AB, Kiseleva YY, Mitkevich VA, Kozin SA, Makarov AA (2018) Heparin modulates the kinetics of zinc-induced aggregation of amyloid-β peptides. J Alzheimers Dis 63:539–550. https://doi.org/10.3233/JAD-171120

    Article  CAS  PubMed  Google Scholar 

  62. Caughey B, Raymond GJ (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 67:643–650. https://doi.org/10.1128/JVI.67.2.643-650.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosú SA, Toledo L, Urbano BF, Sanchez SA, Calabrese GC, Tricerri MA (2017) Learning from synthetic models of extracellular matrix; differential binding of wild type and amyloidogenic human apolipoprotein A-I to hydrogels formed from molecules having charges similar to those found in natural GAGs. Protein J 36:374–383. https://doi.org/10.1007/s10930-017-9728-8

    Article  CAS  PubMed  Google Scholar 

  64. Castellani R, Siedlak S, Fortino A, Perry G, Ghetti B, Smith M (2005) Chitin-like polysaccharides in Alzheimers disease brains. Curr Alzheimer Res 2:419–423. https://doi.org/10.2174/156720505774330555

    Article  CAS  PubMed  Google Scholar 

  65. Castellani RJ, Perry G, Smith MA (2007) The role of novel chitin-like polysaccharides in Alzheimer disease. Neurotox Res 12:269–274. https://doi.org/10.1007/BF03033910

    Article  CAS  PubMed  Google Scholar 

  66. Sotgiu S, Musumeci S, Marconi S, Gini B, Bonetti B (2008) Different content of chitin-like polysaccharides in multiple sclerosis and Alzheimer’s disease brains. J Neuroimmunol 197:70–73. https://doi.org/10.1016/j.jneuroim.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  67. Semenyuk P, Kurochkina L, Barinova K, Muronetz V (2020) Alpha-synuclein amyloid aggregation is inhibited by sulfated aromatic polymers and pyridinium polycation. Polymers (Basel) 12:517. https://doi.org/10.3390/polym12030517

    Article  CAS  Google Scholar 

  68. Liu H, Ojha B, Morris C, Jiang M, Wojcikiewicz EP, Rao PPN, du D (2015) Positively charged chitosan and N-trimethyl chitosan inhibit Aβ40 fibrillogenesis. Biomacromolecules 16:2363–2373. https://doi.org/10.1021/acs.biomac.5b00603

    Article  CAS  PubMed  Google Scholar 

  69. Liu C, Zhang Y (2011) Nucleic acid-mediated protein aggregation and assembly. In: Advances in protein chemistry and structural biology. Academic Press Inc., pp 1–40

  70. Calamai M, Kumita JR, Mifsud J, Parrini C, Ramazzotti M, Ramponi G, Taddei N, Chiti F, Dobson CM (2006) Nature and significance of the interactions between amyloid fibrils and biological polyelectrolytes. Biochemistry 45:12806–12815. https://doi.org/10.1021/bi0610653

    Article  CAS  PubMed  Google Scholar 

  71. Silva JL, Cordeiro Y (2016) The “Jekyll and Hyde” actions of nucleic acids on the prion-like aggregation of proteins. J Biol Chem 291:15482–15490

    Article  CAS  Google Scholar 

  72. Mambule C, Ando Y, Anan I, Holmgren G, Sandgren O, Stigbrandt T, Tashima K, Suhr OB (2000) Enhancement of AA-amyloid formation in mice by transthyretin amyloid fragments and polyethylene glycol. Biochim Biophys Acta, Gen Subj 1474:331–336. https://doi.org/10.1016/S0304-4165(00)00032-5

    Article  CAS  Google Scholar 

  73. Kotormán M, Simon L, Borics A, Szabó M, Szabó K, Szögi T, Fülöp L (2015) Amyloid-like fibril formation by trypsin in aqueous ethanol. Inhibition of fibrillation by PEG. Protein Pept Lett 22:1104–1110. https://doi.org/10.2174/0929866522666151002154324

    Article  CAS  PubMed  Google Scholar 

  74. Funtan S, Evgrafova Z, Adler J, Huster D, Binder W (2016) Amyloid beta aggregation in the presence of temperature-sensitive polymers. Polymers (Basel) 8:178. https://doi.org/10.3390/polym8050178

    Article  CAS  Google Scholar 

  75. Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40:6036–6046. https://doi.org/10.1021/bi002555c

    Article  CAS  PubMed  Google Scholar 

  76. Wallin C, Friedemann M, Sholts SB, Noormägi A, Svantesson T, Jarvet J, Roos PM, Palumaa P, Gräslund A, Wärmländer SKTS (2020) Mercury and Alzheimer’s disease: Hg(II) ions display specific binding to the amyloid-β peptide and hinder its fibrillization. Biomolecules 10:44. https://doi.org/10.3390/biom10010044

    Article  CAS  Google Scholar 

  77. Evstafyeva DB, Izumrudov VA, Muronetz VI, Semenyuk PI (2018) Tightly bound polyelectrolytes enhance enzyme proteolysis and destroy amyloid aggregates. Soft Matter 14:3768–3773. https://doi.org/10.1039/c8sm00101d

    Article  CAS  PubMed  Google Scholar 

  78. Assarsson A, Linse S, Cabaleiro-Lago C (2014) Effects of polyamino acids and polyelectrolytes on amyloid β fibril formation. Langmuir 30:8812–8818. https://doi.org/10.1021/la501414j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E, Walsh DM, Dawson KA, Linse S (2008) Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J Am Chem Soc 130:15437–15443. https://doi.org/10.1021/ja8041806

    Article  CAS  PubMed  Google Scholar 

  80. Jiang Z, Dong X, Sun Y (2018) Charge effects of self-assembled chitosan-hyaluronic acid nanoparticles on inhibiting amyloid β-protein aggregation. Carbohydr Res 461:11–18. https://doi.org/10.1016/j.carres.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  81. Baysal I, Yabanoglu-Ciftci S, Tunc-Sarisozen Y, Ulubayram K, Ucar G (2013) Interaction of selegiline-loaded PLGA-b-PEG nanoparticles with beta-amyloid fibrils. J Neural Transm 120:903–910. https://doi.org/10.1007/s00702-013-0992-2

    Article  CAS  PubMed  Google Scholar 

  82. Baysal I, Ucar G, Gultekinoglu M, Ulubayram K, Yabanoglu-Ciftci S (2017) Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J Neural Transm 124:33–45. https://doi.org/10.1007/s00702-016-1527-4

    Article  CAS  PubMed  Google Scholar 

  83. Birks J, Flicker L (2003) Selegiline for Alzheimer’s disease. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd000442

  84. Giorgetti S, Greco C, Tortora P, Aprile FA (2018) Targeting amyloid aggregation: an overview of strategies and mechanisms. Int J Mol Sci 19

  85. Gazit E (2002) A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83. https://doi.org/10.1096/fj.01-0442hyp

    Article  CAS  PubMed  Google Scholar 

  86. Findeis MA, Musso GM, Arico-Muendel CC, Benjamin HW, Hundal AM, Lee JJ, Chin J, Kelley M, Wakefield J, Hayward NJ, Molineaux SM (1999) Modified-peptide inhibitors of amyloid β-peptide polymerization. Biochemistry 38:6791–6800. https://doi.org/10.1021/bi982824n

    Article  CAS  PubMed  Google Scholar 

  87. Soto C, Sigurdsson EM, Morelli L, Asok Kumar R, Castaño EM, Frangione B (1998) β-Sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 4:822–826. https://doi.org/10.1038/nm0798-822

    Article  CAS  PubMed  Google Scholar 

  88. Tjernberg LO, Näslundt J, Lindqvist F et al (1996) Arrest of β-amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271:8545–8548. https://doi.org/10.1074/jbc.271.15.8545

    Article  CAS  PubMed  Google Scholar 

  89. Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.x

    Article  CAS  PubMed  Google Scholar 

  90. Vilcacundo R, Méndez P, Reyes W, Romero H, Pinto A, Carrillo W (2018) Antibacterial activity of hen egg white lysozyme denatured by thermal and chemical treatments. Sci Pharm 86:48. https://doi.org/10.3390/scipharm86040048

    Article  CAS  Google Scholar 

  91. Jiang D, Rauda I, Han S, Chen S, Zhou F (2012) Aggregation pathways of the amyloid β(1 42) peptide depend on its colloidal stability and ordered β-sheet stacking. Langmuir 28:12711–12721. https://doi.org/10.1021/la3021436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hortschansky P, Schroeckh V, Christopeit T, Zandomeneghi G, Fändrich M (2005) The aggregation kinetics of Alzheimer’s β-amyloid peptide is controlled by stochastic nucleation. Protein Sci 14:1753–1759. https://doi.org/10.1110/ps.041266605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu P, Zhang S, Chen MS, Liu Q, Wang C, Wang C, Li YM, Besenbacher F, Dong M (2012) Co-assembly of human islet amyloid polypeptide (hIAPP)/insulin. Chem Commun 48:191–193. https://doi.org/10.1039/c1cc14285b

    Article  CAS  Google Scholar 

  94. Holubova M, Konefał R, Moravkova Z, Zhigunov A, Svoboda J, Pop-Georgievski O, Hromadkova J, Groborz O, Stepanek P, Hruby M (2017) Carbon nanospecies affecting amyloid formation. RSC Adv 7:53887–53898. https://doi.org/10.1039/C7RA11296C

    Article  CAS  Google Scholar 

  95. Hirsh SL, McKenzie DR, Nosworthy NJ et al (2013) The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf B: Biointerfaces 103:395–404. https://doi.org/10.1016/j.colsurfb.2012.10.039

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Monika Holubová received financial support from Charles University, project GA UK No. 386218. PS and MH also received financial support from the Czech Science Foundation (grants nos. 19-01438S and 18-07983S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hrubý.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holubová, M., Štěpánek, P. & Hrubý, M. Polymer materials as promoters/inhibitors of amyloid fibril formation. Colloid Polym Sci 299, 343–362 (2021). https://doi.org/10.1007/s00396-020-04710-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04710-8

Keywords

Navigation