Skip to main content
Log in

Diverse roles of Tup1p and Cyc8p transcription regulators in the development of distinct types of yeast populations

  • Mini-Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Yeasts create multicellular structures of varying complexity, such as more complex colonies and biofilms and less complex flocs, each of which develops via different mechanisms. Colony biofilms originate from one or more cells that, through growth and division, develop a complicated three-dimensional structure consisting of aerial parts, agar-embedded invasive parts and a central cavity, filled with extracellular matrix. In contrast, flocs arise relatively quickly by aggregation of planktonic cells growing in liquid cultures after they reach the appropriate growth phase and/or exhaust nutrients such as glucose. Creation of both types of structures is dependent on the presence of flocculins: Flo11p in the former case and Flo1p in the latter. We recently showed that formation of both types of structures by wild Saccharomyces cerevisiae strain BR-F is regulated via transcription regulators Tup1p and Cyc8p, but in a divergent manner. Biofilm formation is regulated by Cyc8p and Tup1p antagonistically: Cyc8p functions as a repressor of FLO11 gene expression and biofilm formation, whereas Tup1p counteracts the Cyc8p repressor function and positively regulates biofilm formation and Flo11p expression. In addition, Tup1p stabilizes Flo11p probably by repressing a gene coding for a cell wall or extracellular protease that is involved in Flo11p degradation. In contrast, formation of BR-F flocs is co-repressed by the Cyc8p–Tup1p complex. These findings point to different mechanisms involved in yeast multicellularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alkafeef SS, Yu C, Huang L, Liu H (2018) Wor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans. PLoS Genet 14:e1007176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bader O, Krauke Y, Hube B (2008) Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol 8:116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer J, Wendland J (2007) Candida albicans Sfl1 suppresses flocculation and filamentation. Eukaryot Cell 6:1736–1744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhai S, Sun Y, Li M, Dong Y, Wang X, Zhang H, Zheng X, Wang P, Zhang Z (2015) MoTup1 is required for growth, conidiogenesis and pathogenicity of Magnaporthe oryzae. Mol Plant Pathol 16:799–810

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Poorey K, Carver MN, Muller U, Bekiranov S, Auble DT, Brow DA (2017) Transcriptomes of six mutants in the Sen1 pathway reveal combinatorial control of transcription termination across the Saccharomyces cerevisiae genome. PLoS Genet 13:e1006863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elias-Villalobos A, Fernandez-Alvarez A, Ibeas JI (2011) The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen. PLoS Pathog 7:e1002235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fichtner L, Schulze F, Braus GH (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 66:1276–1289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleming AB, Beggs S, Church M, Tsukihashi Y, Pennings S (2014) The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim Biophys Acta 1839:1242–1255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Sanchez S, Mavor AL, Russell CL, Argimon S, Dennison P, Enjalbert B, Brown AJ (2005) Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol Biol Cell 16:2913–2925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernday AD, Lohse MB, Nobile CJ, Noiman L, Laksana CN, Johnson AD (2016) Ssn6 defines a new level of regulation of white-opaque switching in Candida albicans and is required for the stochasticity of the switch. mBio 7:e01565–e01515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karunanithi S, Vadaie N, Chavel CA, Birkaya B, Joshi J, Grell L, Cullen PJ (2010) Shedding of the mucin-like flocculin Flo11p reveals a new aspect of fungal adhesion regulation. Curr Biol 20:1389–1395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J, Lee JE, Lee JS (2015) Histone deacetylase-mediated morphological transition in Candida albicans. J Microbiol 53:805–811

    Article  CAS  PubMed  Google Scholar 

  • Kliewe F, Engelhardt M, Aref R, Schuller HJ (2017) Promoter recruitment of corepressors Sin3 and Cyc8 by activator proteins of the yeast Saccharomyces cerevisiae. Curr Genet 63:739–750

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Chang YC, Kwon-Chung KJ (2005) TUP1 disruption reveals biological differences between MATa and MATalpha strains of Cryptococcus neoformans. Mol Microbiol 55:1222–1232

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Chang YC, Varma A, Kwon-Chung KJ (2009) Regulatory diversity of TUP1 in Cryptococcus neoformans. Eukaryot Cell 8:1901–1908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JE, Oh JH, Ku M, Kim J, Lee JS, Kang SO (2015) Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31. FEBS Lett 589:513–520

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang X, Hu S, Liu H, Xu JR (2017) PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. PLoS Genet 13:e1006954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipke PN, Hullpillsbury C (1984) Flocculation of Saccharomyces cerevisiae tupl mutants. J Bacteriol 159:797–799

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915–926

    Article  CAS  PubMed  Google Scholar 

  • Nguyen PV, Hlavacek O, Marsikova J, Vachova L, Palkova Z (2018) Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet 14:e1007495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palkova Z, Vachova L (2016) Yeast cell differentiation: lessons from pathogenic and non-pathogenic yeasts. Semin Cell Dev Biol 57:110–119

    Article  CAS  PubMed  Google Scholar 

  • Palkova Z, Wilkinson D, Vachova L (2014) Aging and differentiation in yeast populations: elders with different properties and functions. FEMS Yeast Res 14:96–108

    Article  CAS  PubMed  Google Scholar 

  • Patel BK, Gavin-Smyth J, Liebman SW (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat Cell Biol 11:344–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schachtschabel D, Arentshorst M, Nitsche BM, Morris S, Nielsen KF, van den Hondel CA, Klis FM, Ram AF (2013) The transcriptional repressor TupA in Aspergillus niger is involved in controlling gene expression related to cell wall biosynthesis, development, and nitrogen source availability. PloS One 8:e78102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Bioch Sci 25:325–330

    Article  CAS  Google Scholar 

  • Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latge JP, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18

    Article  CAS  Google Scholar 

  • Stovicek V, Vachova L, Kuthan M, Palkova Z (2010) General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol 47:1012–1022

    Article  CAS  Google Scholar 

  • Stovicek V, Vachova L, Begany M, Wilkinson D, Palkova Z (2014) Global changes in gene expression associated with phenotypic switching of wild yeast. BMC Genom 15:136

    Article  Google Scholar 

  • Stratford M (1992) Yeast flocculation: reconciliation of physiological and genetic viewpoints. Yeast 8:25–38

    Article  CAS  PubMed  Google Scholar 

  • Su C, Yu J, Lu Y (2018) Hyphal development in Candida albicans from different cell states. Curr Genet. https://doi.org/10.1007/s00294-018-0845-5

    Article  PubMed  Google Scholar 

  • Teunissen AW, van den Berg JA, Steensma HY (1995) Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae. Yeast 11:435–446

    Article  CAS  PubMed  Google Scholar 

  • Todd RB, Greenhalgh JR, Hynes MJ, Andrianopoulos A (2003) TupA, the Penicillium marneffei Tup1p homologue, represses both yeast and spore development. Mol Microbiol 48:85–94

    Article  CAS  PubMed  Google Scholar 

  • Vachova L, Palkova Z (2018) How structured yeast multicellular communities live, age and die? FEMS Yeast Res 18:foy033

    Article  CAS  Google Scholar 

  • Vachova L, Stovicek V, Hlavacek O, Chernyavskiy O, Stepanek L, Kubinova L, Palkova Z (2011) Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol 194:679–687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Varanasi US, Klis M, Mikesell PB, Trumbly RJ (1996) The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. Mol Cell Biol 16:6707–6714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    Article  CAS  Google Scholar 

  • Vopalenska I, St’ovicek V, Janderova B, Vachova L, Palkova Z (2010) Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. Environ Microbiol 12:264–277

    Article  CAS  PubMed  Google Scholar 

  • Wong KH, Struhl K (2011) The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25:2525–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Derek Wilkinson for proofreading of the manuscript. ZP was supported by LQ1604 NPU II provided by Ministry of Education, Youth and Sports; LV by RVO61388971 from Czech Academy of Sciences; and the research was performed in BIOCEV supported by CZ.1.05/1.1.00/02.0109 BIOCEV provided by European Regional Development Fund and Ministry of Education, Youth and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdena Palková.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Váchová, L., Palková, Z. Diverse roles of Tup1p and Cyc8p transcription regulators in the development of distinct types of yeast populations. Curr Genet 65, 147–151 (2019). https://doi.org/10.1007/s00294-018-0883-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-018-0883-z

Keywords

Navigation