Skip to main content
Log in

Derivation of the Navier–Stokes–Poisson System with Radiation for an Accretion Disk

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the 3-D compressible barotropic radiation fluid dynamics system describing the motion of the compressible rotating viscous fluid with gravitation and radiation confined to a straight layer \( \Omega _{\epsilon } = \omega \times (0,\epsilon ) \), where \( \omega \) is a 2-D domain. We show that weak solutions in the 3-D domain converge to the strong solution of—the rotating 2-D Navier–Stokes–Poisson system with radiation in \(\omega \) as \(\epsilon \rightarrow 0\) for all times less than the maximal life time of the strong solution of the 2-D system when the Froude number is small \((Fr={\mathcal {O}}(\sqrt{\epsilon }))\),—the rotating pure 2-D Navier–Stokes system with radiation in \(\omega \) as \(\epsilon \rightarrow 0\) when \(Fr={\mathcal {O}}(1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G., Golse, F.: Transport et diffusion, Lecture notes. http://www.cmls.polytechnique.fr/perso/golse/MAT567-11/POLY567.pdf. Accessed 19 Dec 2017

  2. Bella, P., Feireisl, E., Novotný, A.: Dimensional reduction for compressible viscous fluids. Acta Appl. Math. 134, 111–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buet, C., Després, B.: Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. J. Quant. Spectrosc. Radiat. Transf. 85, 385–480 (2004)

    Article  ADS  Google Scholar 

  4. Chandrasekhar, S.: Radiative Transfer. Dover Publications Inc, New York (1960)

    MATH  Google Scholar 

  5. Choudhuri, A.R.: The Physics of Fluids and Plasmas, an Introduction for Astrophysicists. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  6. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. DiPerna, R., Lions, P.L.: Ordinary differential equations, Sobolev spaces and transport theory. Invent. Math. 98, 511–547 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ducomet, B., Caggio, M., Nečasov\(\acute{{\rm a}}\), Š., Pokorný, M.: The rotating Navier–Stokes–Fourier–Poisson system on thin domains, submitted. arXiv:1606.01054

  9. Ducomet, B., Feireisl, E., Nečasová, Š.: On a model of radiation hydrodynamics. Ann. I. H. Poincaré-AN 28, 797–812 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ducomet, B., Feireisl, E., Petzeltová, H., Straškraba, I.: Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete Contin. Dyn. Syst. 11, 113–130 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ducomet, B., Nečasová, Š.: Global smooth solution of the Cauchy problem for a model of radiative flow. Ann. della Scuola Norm. Sup. di Pisa 14, 1–36 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Ducomet, B., Nečasov\(\acute{{\rm a}}\), Š.: Non equilibrium diffusion limit in a barotropic radiative flow. In: Radulescu, V.D., Sequeira, A., Solonnikov, V.A. (eds.) Proceedings of the International Conference on Recent Advances in PDEs and Applications, in honor of Hugo Beiro da Veiga’s 70th birthday, Levico Terme, 17–21 February 2014. Recent Advances in Partial Differential Equations and Applications, pp. 265–279. American Mathematical Society, Providence (2016)

  13. Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak–strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14, 717–730 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Feireisl, E., Novotný, A.: Weak strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fiszdon, W., Zajaczkowski, W.M.: The initial boundary value problem for the flow of a barotropic viscous fluid, global in time. Appl. Anal. 15, 91–114 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Germain, P.: Weak–strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. 13, 137–146 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kreml, O., Nečasová, Š., Pokorný, M.: On the steady equations for compressible radiative gas Z. Angew. Math. Phys. 64(3), 539–571 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lowrie, R.B., Morel, J.E., Hittinger, J.A.: The coupling of radiation and hydrodynamics. Astrophys. J. 521, 432–450 (1999)

    Article  ADS  Google Scholar 

  19. Maltese, D., Novotný, A.: Compressible Navier–Stokes equations in thin domains. J. Math. Fluid Mech. 16, 571–594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Matsumura, D., Nishida, T.: Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluid. Commun. Math. Phys. 89, 445–464 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Mellet, A., Vasseur, A.: Existence and uniqueness of global strong solutions for one-dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 39, 1344–1365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mihalas, B., Weibel-Mihalas, B.: Foundations of Radiation Hydrodynamics. Dover Publications, Dover (1984)

    MATH  Google Scholar 

  23. Montesinos Armijo, A.: Review: accretion disk theory. ArXiv:1203.685v1 [astro-ph.HE], 30 Mar 2012

  24. Ogilvie, G.I.: Accretion disks. In: Soward, A.M., Jones, C.A., Hughes, D.W., Weiss, N.O. (eds.) Fluid Dynamics and Dynamos in Astrophysics and Geophysics, pp. 1–28. CRC Press, Boca Raton (2005)

    Google Scholar 

  25. Pomraning, G.C.: Radiation hydrodynamics. Dover Publications, New York (2005)

    Google Scholar 

  26. Pringle, J.E.: Accretion disks in astrophysics. Ann. Rev. Astron. Astrophys. 19, 137–162 (1981)

    Article  ADS  Google Scholar 

  27. Saint-Raymond, L.: Hydrodynamic limits: some improvements of the relative entropy method. Ann. I. H. Poincaré-AN 26, 705–744 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Valli, A., Zajaczkowski, W.: Navier–Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Vodák, R.: Asymptotic analysis of three-dimensional Navier–Stokes equations for compressible nonlinearly viscous fluids. Dyn. PDE 5, 299–311 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Vodák, R.: Asymptotic analysis of steady and nonsteady Navier–Stokes equations for barotropic compressible flows. Acta Appl. Math. 110, 991–1009 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

B. D. is partially supported by the ANR project INFAMIE (ANR-15-CE40-0011) Š. N. is supported by the Czech Science Foundation, grant No. 201-16-03230S and by RVO 67985840. Part of this paper was written during her stay in CEA and she would like to thank Prof. Ducomet for his hospitality during her stay. M. P. was supported by the Czech Science Foundation, Grant No. 201-16-03230S. M.A.R.B. was partially supported by MINECO grant MTM2015-69875-P (Ministerio de Economía y Competitividad, Spain) with the participation of FEDER. She would also like to thank Prof. Nečasová for her hospitality during the stay in Prague. Last, but not least, we would like to thank an anonymous referee for careful reading of the original manuscript and for his suggestions which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Nečasová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by H. Beirao da Veiga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducomet, B., Nečasová, Š., Pokorný, M. et al. Derivation of the Navier–Stokes–Poisson System with Radiation for an Accretion Disk. J. Math. Fluid Mech. 20, 697–719 (2018). https://doi.org/10.1007/s00021-017-0358-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-017-0358-x

Keywords

Navigation