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Abstract

The cell cycle coordinates core functions such as replication and cell division. However,

cell-cycle-regulated transcription in the control of non-core functions, such as cell identity

maintenance through specific transcription factors (TFs) and signalling pathways remains

unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchro-

nized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression.

We developed a novel algorithm for data analysis that enables efficient visualization and

data comparisons and identified cell cycle synchronization of Notch signalling and TFs asso-

ciated with development. Furthermore, the cell cycle synchronizes with the circadian clock,

providing a possible link between developmental transcriptional networks and the cell cycle.

In conclusion we find that cell cycle synchronized transcriptional patterns are temporally

compartmentalized and more complex than previously anticipated, involving genes, which

control cell identity and development.

Introduction

The cell cycle coordinates a series of changes that result in the initiation of specific core func-

tions at different cell cycle stages, supporting, for example, DNA replication, quality control

and cell division. One level of control in this process is exercised by feed-forward and feedback

loops of posttranslational modifications and protein degradation. Another level of control is
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Johard H, Mahdessian D, Fedr R, et al. (2017)

Comparative cell cycle transcriptomics

reveals synchronization of developmental

transcription factor networks in cancer cells. PLoS

ONE 12(12): e0188772. https://doi.org/10.1371/

journal.pone.0188772

Editor: Swati Palit Deb, Virginia Commonwealth

University, UNITED STATES

Received: July 11, 2017

Accepted: November 13, 2017

Published: December 11, 2017

Copyright: © 2017 Boström et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The raw read data

files, Read Counts and RPKM values are available

as a GEO submission (https://www.ncbi.nlm.nih.

gov/geo/, #GSE104736). EdgeR results and

TriComp analysis results are available within the

Supporting Information files.

Funding: The study was supported by grants from

the Swedish Research Council (M.An), Swedish

Cancer Foundation (P.S, M.An), Swedish

Childhood Cancer Foundation (M.An), the Hållsten

https://doi.org/10.1371/journal.pone.0188772
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188772&domain=pdf&date_stamp=2017-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188772&domain=pdf&date_stamp=2017-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188772&domain=pdf&date_stamp=2017-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188772&domain=pdf&date_stamp=2017-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188772&domain=pdf&date_stamp=2017-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188772&domain=pdf&date_stamp=2017-12-11
https://doi.org/10.1371/journal.pone.0188772
https://doi.org/10.1371/journal.pone.0188772
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


maintained via regulated transcription. The transcriptional changes that occur during the cell

cycle in mammalian cells are associated with cell cycle transition points: G1-to-S, G2-to-M

and M-to-G1[1]. By far, the most well studied point of transcriptional control is the G1-to-S

transition, where S phase transcription is activated by E2F1-3, members of the E2F family of

transcription factors (TFs), after they are released from the hyperphosphorylated RB protein

[1–3] and Cyclin/CDK complexes. This activation is followed by transcriptional repression

later in the S phase by E2F4-8 and pocket proteins p107 and p130 in late S phase [1, 4].

In addition to controlling basic functions such as replication and cell division, the cell cycle

also affects the maintenance of and changes in cell identity and specification during develop-

ment. For example, in human embryonic stem cells, Cyclin Ds control TGF-β signalling and

the activation status of SMAD2/3, rendering the cell susceptible to differentiation along differ-

ent lineages in early versus late G1 phase [5]. Likewise, in neural progenitor cells, Notch signal-

ling integrates with the cell cycle to impact neural lineage specification [6, 7]. Further adding

to this complex view of the cell cycle, WNT/Frizzled/β-catenin signalling shows a peak in G2

in some cells [8, 9]. TFs that oscillate during the cell cycle may interact with each other in tran-

scriptional networks that can facilitate a series of successive activation or repression steps [1,

10, 11]. This might result in a domino-like effect, feeding information forward through the cell

cycle, potentially with some degree of independence. Indeed, studies in yeast cells have shown

that up to 20% of the TFs that oscillate with the cell cycle are non-essential TFs [12], and these

genes may become self-sustained in their oscillatory behaviour in the absence of the cyclin/

CDK-based cell cycle [13]. Such TF networks may thus constitute semi-autonomous transcrip-

tional networks that propagate information through the cell cycle. Adding another layer of

control, the circadian molecular clock is an independent transcriptional oscillator that recipro-

cally synchronizes with the cell cycle [14–17].

To map both core and cell-type-specific cell cycle-dependent transcription, we examined

the HeLa cell cycle transcriptome and compared it to that of U2OS cells using RNA sequenc-

ing of cells sorted according to cell cycle without chemical synchronization. To efficiently map

cell cycle oscillators and categorize distinct cell cycle phase patterns, we developed a novel

algorithm, TriComp. This algorithm calculates two comprehensible variables that describe

complex relationships between three quantitative variables, i.e., levels of expression in three

cell cycle phases. Moreover, it allows for straightforward comparisons between different types

of data sets. Patterns identified by the TriComp algorithm were superimposed onto established

TF networks to reveal the potential temporal succession of gene expression, reflecting activa-

tion/repression hierarchies involved in cell cycle oscillation.

Results

Fucci-based separation of cell cycle phases and deep RNA sequencing

Previous analyses of cell cycle-dependent transcription have in most cases used chemically

synchronized cells [18, 19]. Live cell cycle phase reporters such as the Fucci system [20] pro-

vide an alternative method that has been explored in recent analyses of the cell cycle in, for

example, embryonic stem cells [5, 21, 22]. To characterize the relationship of the Fucci probes

to the mitotic cell cycle, we analyzed chromatin content and DNA replication status and visu-

alized it overlaid on Fucci reporter fluorescence, Panel A in S1 Fig. This experiment establishes

that the majority of actively replicating cells are mAG-hGem+, mKO2-hCdt1+. We then used

Fucci reporters to sort live, unsynchronized cells into discrete populations corresponding to

non-replicating 1X-chromatin cells (G1-phase), actively replicating cells (S-phase) and non-

replicating 2X-chromatin cells (G2/M-phase) by flow cytometry (Fig 1A and 1B, S1 Table).

Control samples of sorted populations were fixed and analysed for cell cycle phase based on
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DNA content, demonstrating the correlation between Fucci-based and DNA content-based

cell cycle phase determination (Panels A,B in S2 Fig). Three cell cycle phase populations from

two cell lines, HeLa-Fucci and U2OS-Fucci, were analysed for gene expression by RNA se-

quencing. The data were processed by an ANOVA-like differential gene expression approach

from the edgeR package [23]. Stringency cut-offs were used for the calculated false discovery

rate (FDR), average gene expression (logCPM) and maximal fold change (FC) for each gene

(Panels C,D in S2 Fig, S2 Table). In this report, we focused on transcript levels and disregarded

splice variants. However, the information on splice variants is available for reuse in GEO:ID

(PLACEHOLDER: To be submitted). Of the transcripts with measurable mRNA levels, ap-

proximately one-third significantly oscillated in synchrony with the cell cycle (FDR�0.001)

(Fig 1C, Panel E in S2 Fig), possibly representing known cell cycle regulated genes as well as

unidentified genes expressed in a cell cycle-dependent manner.

A new algorithm for comparisons between three groups of data

To classify and visualize the expression patterns of genes that are regulated over the three

sorted cell cycle phases, we developed a novel algorithm for simultaneous comparisons

between three groups of data, TriComp. The algorithm generates an angular coordinate for

each gene (θ) that reveals the relationship pattern between the three temporal stages and a

radial coordinate (r) that reflects the extent of the relationship pattern based on the FC

between the highest and lowest expression values in the cell cycle phases (Fig 1D, S2 Table).

Every possible relationship pattern corresponds to a specific θ-value, but the θ-value does

not store any information about the intensity of such a relationship (this is stored in the r-

value). For example, the relationship between the three expression values (1 | 2 | 4) and (1 | 10 |

100) which both share the relationship (group two being logarithmically exactly halfway

between group 1 and 3) share the same θ-value (240˚) with the latter having a much higher r-

value. The same principle holds true with the two groups of values; (1 | 1 | 1.01), and (1 | 1 |

14682). Both have a θ-value of 300˚ but widely different r-values. This highlights the impor-

tance of including filtering both on statistical significance and biological significance when

analyzing data using θ-values. Using these two coordinates reduces the complexity of the

three-group comparisons, enables meaningful categorization and provides informative visuali-

zation. Moreover, the θ-value (after filtering based on applied statistics and r-value) can be

used for comparisons between experiments, between cell lines, and between different data sets.

To categorize genes with similar expression patterns, the spectrum of relationships was

divided into 6 categories based on θ-value (Fig 1D, Panel G in S2 Fig). Each θ-category corre-

sponds to a binary classification of gene expression over the three phases relative to each other.

Categories 1, 3 and 5 represent patterns of gene expression that peak in a single cell cycle

phase: G1, S or G2/M. Categories 2, 4 and 6 represent a composite pattern where gene expres-

sion is high in two consecutive cell cycle phases and low in the third phase, i.e., high in G1+S, S

+G2/M and G2/M+G1.

Fig 1. Visualization of transcripts oscillating with the cell cycle reveals expression patterns. (A) The scheme of the experimental and analytical

workflow. (B) HeLa-Fucci cells were sorted into three restricted cell cycle phases, G1, S, and G2/M, according to the expression of Fucci markers. (C) A heat

map analysis shows differential gene expression patterns in sorted HeLa-Fucci cells. (D) For each individual transcript in the HeLa-Fucci transcriptome, the

TriComp algorithm was used to calculate polar coordinates (θ, r). θ denotes the relationship between gene expression levels in the three cell cycle phases,

and r denotes the intensity of this relationship. Genes with similar expression patterns were divided into six categories (6x60˚) based on their θ-value. (E)

Polar coordinates for all transcripts found to oscillate significantly in synchrony with the cell cycle (FDR�0.001, logCPM�1, FC�1.5) in sorted HeLa-Fucci

cells show an unequal distribution. (F-H) θ-values describing the distribution of relationship patterns of oscillation for all significantly oscillating transcripts in

HeLa cells (FDR�0.001) (F), transcripts belonging to GO terms associated with the cell cycle (H), and common cell cycle markers (G). Significance stars

denote the probability of arising from the same distribution as the full set of significantly oscillating transcripts using log-likelihood-ratio statistical comparison

with a six-group binning (***: p < 0.001).

https://doi.org/10.1371/journal.pone.0188772.g001
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The distribution of transcript expression patterns was visualized by projecting the θ and r

coordinates of 1132 transcripts in the HeLa-Fucci transcriptome (FDR�0.001, logCPM>1,

FC�1.5) in a circular graph (Fig 1E). To inspect this distribution more closely, we plotted the

θ-values for all significantly oscillating transcripts in HeLa cells (Fig 1F). This uncovered a pat-

tern of genes with high transcript levels in categories 2 (G1+S) and 5 (G2/M) and low tran-

script levels in categories 3 (S phase) and 6 (G2/M+G1 phase). These results suggest that the

expression of a large number of transcripts is controlled throughout the cell cycle.

We validated the TriComp analysis of our sequencing data by correlating the θ-values with

Gene Ontology terms associated with the cell cycle (S3 Table). GO terms associated with G1/S

transition were found in θ-categories 2 and 3, GO terms involved in DNA replication were

restricted to θ-categories 2 and 3, and GO terms related to G2/M transition and mitosis con-

tained genes from θ-categories 5 and 6 (Fig 1G). A visual alignment of θ-values for recognized

cell cycle phase markers verified the expected order of expression, in which the transcripts for

Cyclin D1/2/3 and Cyclin E1/2 were succeeded by those for Cyclin A1/A2, B1/B2, Aurora

kinase A and Polo-like kinase 1 (Fig 1H). These results show that the TriComp algorithm

enables straightforward comparisons between the three cell cycle phases and reveals the tem-

poral succession of cell cycle regulated gene expression.

Validation of TriComp analyses and data comparisons

To further validate the TriComp-based analysis, we compared genes oscillating in a cell cycle-

dependent manner shared by the HeLa-Fucci and U2OS-Fucci data sets by plotting the θ-

value for all significantly oscillating transcripts. The direct comparison showed a clear correla-

tion between the two data sets, as 90% of the genes had a θ-value difference lower than 60

degrees (Fig 2A). Interestingly, the transcriptional pattern observed in the HeLa-Fucci data set

(Fig 1F, Fig 2B) was also observed in the U2OS-Fucci data set (Fig 2C), indicating that regard-

less of cell type, similar transcriptional regulation occurs in a time-specific manner.

The θ-value derived from the TriComp algorithm can be readily used for comparisons

between data sets where the temporal descriptor is of another character. To externally validate

our data set, the HeLa-Fucci cell cycle data were compared to two previously published cell

cycle data sets [18, 19]. These studies used chemically synchronized HeLa cells and sinusoidal

curve fitting and pattern matching from multiple microarray time-point analyses to map the

oscillations of the transcriptome. After mapping the Whitfield et al. probe results to our tran-

scripts using Gene IDs and BioMart, we compared the peak position of the sinusoidal curve fit-

ting (Arctan2) to the TriComp θ-value π-values (Fig 2D). Out of 723 single-gene unique

probes in the Whitfield et al. study, 505 probes were identified to oscillate in our data set as

well (FDR�0.001, FC�1.1.) (Panel A in S3 Fig).

We next compared our data to Dominguez et al., and of the 1182 genes identified to oscillate

by their study, a total of 1078 genes matched gene names in our data set. 589 of these genes signifi-

cantly oscillated in our data set (at FDR�0.001, FC�1.1). Dominguez et al. allocated oscillating

genes into 6 categories, and plotting these categories against the TriComp θ-values from our data

set showed a similar distribution pattern over the cell cycle (Panel B in S3 Fig). In addition, all of

the 67 genes defined by Dominguez et al. as the cell cycle "core set" were found to be statistically

significantly oscillating in our data set and the oscillation patterns correspond to our data (Fig 2E).

Together, comparisons to other cell cycle transcriptome experiments showed similar results

for transcripts that could be matched in corresponding data sets. Our RNA sequencing identi-

fied over 5000 transcripts (including noncoding transcripts) that exhibited cell cycle-depen-

dent oscillatory behaviour (Panel E in S2 Fig), providing a potential opportunity to identify

genes with as yet uncovered cell cycle regulatory effects.

Cell cycle transcriptional networks
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Patterns of TF expression during the cell cycle

The pattern observed in Fig 1F indicated extensive transcriptional regulation during the cell

cycle. Therefore, we examined the expression patterns of TFs, as regulators of transcription,

more closely. To search for potential patterns in TF expression correlating with cell cycle pro-

gression, we mapped transcripts coding for TFs in both the HeLa and U2OS data sets by filter-

ing the transcriptome data using a list of known TFs (Animal TFDB (Ref: PMID 22080564)),

Fig 2. Comparisons of different cell cycle data sets show consistent expression patterns. (A) Comparative analysis of HeLa-Fucci and

U2OS-Fucci cell cycle-dependent transcriptomes after plotting their respective θ-value for each shared transcript (stringency level: FDR�0.001). The

green area denotes a correlation of less than 60 degrees in the θ-value. (B, C) Number of transcripts in each of the six TriComp θ-categories

(FDR�0.001). (D) Plot of the θ-value for HeLa-Fucci transcripts versus the reported phase peak value for each probe reported by Whitfield et al.[19].

(E) Category distribution plots for the core set of 67 genes reported by [18] versus the θ-value for genes significantly oscillating (FDR�0.001) in

HeLa-Fucci cells.

https://doi.org/10.1371/journal.pone.0188772.g002
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comprising 1591 genes in total. We identified 390 TFs in HeLa cells and 82 TFs in U2OS cells

that significantly oscillated (FDR�0.001) above the 1.1 FC level (S4 Table). Mapping the θ-val-

ues of significantly oscillating TFs in HeLa (Fig 3A) and U2OS (Fig 3B) cells showed a pattern

similar to that of all significantly oscillating transcripts in Fig 1F. We next subdivided the tran-

scriptome data into discrete TF subfamilies and analysed the distribution of the θ-values in

HeLa (Fig 3C) and U2OS (Fig 3D) cells. Interestingly, apart from the core cell cycle machinery

that included TFs like E2F family, other TF families with a high number of oscillating genes

included developmental patterning and cell identity genes. The E2F TFs clustered in θ-catego-

ries spanning the S phase, while developmental TF families such as Homeobox, Forkhead and

zf-C2H2 clustered predominantly in θ-categories 1–2 or 5–6, but not in category 3 (S phase).

A STRING[24] analysis of the oscillating TFs in HeLa cells (Panel C in S3 Fig) suggested exten-

sive network integration of a large number of TFs, with nodes such as MYC, TP53, NCOR1,

PPARA and SMAD3 appearing to link the cell cycle to TFs associated with neurodevelopment

(such as PAX6, ISL1, LHX4 and DLX1) and the circadian clock (ARNTL).

To analyse the phase distribution of the TFs shared between HeLa and U2OS cells, respec-

tive θ-values were plotted, showing a high degree of correlation (all shared TFs exhibited a θ-

value within 75 degrees of each other) (Fig 3E). At the level of FC�1.1 and logCPM�1, we

found 39 TFs with significantly oscillating expression that were shared in both data sets.

According to θ-values, we could identify six consecutive groups, I-VI, throughout the cell

cycle (Fig 3E), indicating that transcriptional regulation follows a pattern of temporal succes-

sion. Illustrating this idea, the θ-values for the E2F1 and E2F2 transcripts peaked earlier than

those for the E2F7 and E2F8 transcripts (the former clustering with group II and the latter in

group IV), creating a known activator/repressor loop (Fig 3F) [1]. Further analysis of E2F1

and its known target genes (using a list of 130 E2F targets from Bracken et al. 2004) identified

46 transcripts (out of 110 gene names found in our data sets) that significantly oscillated in

both the HeLa and U2OS data sets. The distribution of E2F targets and non-E2F targets in

HeLa or U2OS cells was visualized by plotting the respective θ-value (Fig 4A and 4B) as well as

a number of genes in each θ-category (Fig 4C and 4D). E2F target transcripts were present in

TriComp θ-categories 2–5, which span the G1/S transition up to G2, and absent in θ-catego-

ries 1 (G1) and 6 (G2/M+G1) (except for one gene in the U2OS data). By contrast, numerous

non-E2F targets were found in θ-categories 1 (G1) and 6 (G2/M+G1) (Fig 4C and 4D). This

difference was statistically significant (p<0.001) and likely reflects G2/M-G1-specific tran-

scriptional control, resulting in temporal compartmentalization and separation of E2F- and

non-E2F-dependent transcription.

We further investigated the protein expression of a set of TFs to determine if their oscil-

latory mRNA behaviour was maintained after translation. Protein expression was examined by

immunostaining, with the cell cycle phase determined by Fucci reporters, and by high-

throughput image analysis of individual cells. This analysis showed that corresponding protein

levels peaked in the same phase or one or two phases later than the mRNA. For example, the

mRNA and protein expression of MYBL1 and TGIF1 peaked in the same phase (Fig 4E and

4F), whereas the mRNA level of HMGB2 peaked in G2/M, while its protein level peaked in G1

(Fig 4G). Likewise, the mRNA expression of KDM5B peaked in G2/M, but its protein level was

highest in the G1 and S phases (Fig 4H). These results indicate that there is variability in trans-

lational control, which is nevertheless maintained in accordance with cell cycle oscillation.

Mapping our data onto known hierarchical relationships of TFs verified that the temporal

component of such relationships could be readily identified with TriComp. For example (Fig

4I), the demethylase KDM5B, an upstream activator of E2F1 expression [25], peaked in G1 at

the mRNA level and in G1 and S phases at the protein level, similar to the mRNA expression

of its target gene E2F1 (Fig 3E). Likewise, the mRNA expression of TFs known to be E2F

Cell cycle transcriptional networks
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Fig 3. Large TF families oscillate and show differential distribution during the cell cycle. (A-D) θ-value plots for all TFs and TF

families with a significantly differing pattern in (A, C) HeLa-Fucci cells and (B, D) U2OS-Fucci cells (FDR�0.001; logCPM�1; FC�1.5).

(E) θ-value plot of cell-cycle-synchronized TFs in HeLa-Fucci cells versus U2OS-Fucci cells, with suggested phase-specific expression

groups denoted I-VI and the main TFs involved in G1 restriction and onset of S phase indicated in red. (F) Schematic showing how

repressor activity may shape transcriptional boundaries during the cell cycle, exemplified by E2F7/8 repression of E2F1/2 expression.

https://doi.org/10.1371/journal.pone.0188772.g003

0 60 120 180 240 300 360
0

60

120

180

240

300

360
E2F-targets (46 transcripts)

0 60 120 180 240 300 360
0

60

120

180

240

300

360
non-E2F-targets (527 transcripts)

 HeLa-Fucci θ polar coordinate  HeLa-Fucci θ polar coordinate

 U
2O

S
-F

U
C

C
I θ

 p
ol

ar
 c

oo
rd

in
at

e

 U
2O

S
-F

uc
ci

 θ
 p

ol
ar

 c
oo

rd
in

at
e

A

0

5

10

15

20
HeLa E2F targets

θ category
1 2 3 4 5 6

0

50

100

150

200
HeLa non-E2F targets

N
um

be
r o

f t
ra

ns
cr

ip
ts

N
um

be
r o

f t
ra

ns
cr

ip
ts

θ category
1 2 3 4 5 6

P value  (LLR)  =  0.000457

B

C

I

E2F1
mRNA

MYBL
HMGB2
KDM5B
mRNA

E2F1
protein

HMGB2
KDM5B
protein

G1+S G2/M G1

0.10

0.20

0.30

0.40

G1 S G2/M

KDM5B
protein

0.20

0.40

0.60

0.80

G1 S G2/M

HMGB2
protein

E

0
20
40
60
80

100

HMGB2
mRNA

0
5

10
15
20
25

KDM5B
mRNA

KDM5B
protein

KDM5B
mRNA

G2/M

0.10

0.20

0.30

0.40

G1 S G2/M

MYBL2
protein

0.20

0.30

0.40

G1 S G2/M

TGIF1
protein

80

100

120

140

160

MYBL2
mRNA

8
10
12
14
16
18

TGIF1
mRNA

M
ea

n 
in

te
ns

ity
 

pe
r c

el
l n

uc
le

us

F

D

G

H

G1 S G2/M

G1 S G2/M

G1 S G2/M

G1 S G2/M

 E
xp

re
ss

io
n 

(R
P

K
M

)

MYBL
protein

M
ea

n 
in

te
ns

ity
 

pe
r c

el
l n

uc
le

us
M

ea
n 

in
te

ns
ity

 
pe

r c
el

l n
uc

le
us

 E
xp

re
ss

io
n 

(R
P

K
M

)
 E

xp
re

ss
io

n 
(R

P
K

M
)

 E
xp

re
ss

io
n 

(R
P

K
M

)

Fig 4. E2F1-controlled gene expression is compartmentalized. (A-D) Comparative analysis of E2F (A, C) and non-E2F targets (B, D) was

performed using both the HeLa-Fucci and U2OS-Fucci cell cycle-dependent transcriptomes by plotting θ-values, with expression groups 2–5

highlighted by a pink box (A, B), and a distribution analysis with a log-likelihood ratio statistical comparison using the HeLa-Fucci cell θ-values (C, D).

(E-H) mRNA expression in the HeLa-Fucci data set (RPKM), and protein levels as Tukey boxplots of average antibody intensities per cell nucleus,

subdivided by cell cycle phase according to the quantification of Fucci reporters using fluorescent imaging. Error bars denote SEM. (I) An example of

known temporal relationships among cell cycle-controlled TFs, verified by our data.

https://doi.org/10.1371/journal.pone.0188772.g004
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targets, such as MYBL2 [26] and HMGB2 [27], peaked in S and G2/M phases (Fig 4E and 4G).

In summary, oscillations in TF mRNAs may be transformed into oscillations in protein

expression and further into the expression of downstream target genes. Therefore, our Tri-

Comp analyses can be used as a starting point to construct networks of temporal causality.

Oscillating developmental TFs assemble into transcriptional networks

outside of S phase

The analysis of TF distribution in Fig 3C and 3D showed that development-associated TF fam-

ilies such as Homeobox, Forkhead, HMG and zf-Z2H2 had varying patterns different from

those of, e.g., the E2F and MYB families (Fig 3C and 3D). Oscillating TFs shared between

HeLa and U2OS cells included SOX4, GLI1 and FOXO6 (peaking in G1) and KLF9, KDM5B

and PRDM1 (peaking in G2/M-G1) (Fig 3E). These TFs are associated not only with develop-

ment but also with cancer [28–36]. This observation prompted us to analyse TFs that are

known to regulate development, focusing on TFs that were specific to either HeLa or U2OS

cells. To this end, individual TFs from a number of TF families that control cell identity and

morphogenesis (Forkhead; Homeobox; PAX; bHLH; HMG; CUT) were visualized as polar

coordinates (FDR�0.001, logCPM>1, FC�1.5), showing a preference for θ-categories 1 (G1)

and 2 (G1+S) and a complete absence from θ-category 3 (S) (Fig 5A and 5B). GO enrichment

analysis (S5 Table) identified enrichment of neurodevelopmental TFs in HeLa cells (a human

cervical carcinoma cell line [37]) (Fig 5C) and mesodermal TFs in U2OS cells (Fig 5D), reflect-

ing the osteosarcoma origin of U2OS [38].

Candidate oscillating developmental programmes were next analysed in more detail by

superimposing known hierarchical relationships of the identified TFs. In the HeLa transcrip-

tome, PAX6, a regulator of neurodevelopment, was one of the TFs with the highest FC during

the cell cycle, with a peak in G2/M (Fig 5A), which was also confirmed at the protein level (S4

Fig). A known activating TF upstream of PAX6, MEIS1 [39], had an expression profile similar

to PAX6 (Fig 5E). Expanding the putative network around PAX6, the mRNA expression of the

PAX6 repressor LHX2 peaked in G1+S, i.e., in an anti-phase manner with PAX6 (Fig 5F),

reflecting its repressor function. Other oscillating repressors of PAX6 were identified in SHH

signalling [40, 41]; both PTCH1 and GLI1 exhibited the highest mRNA expression in G1

phase in HeLa cells (Fig 5F). These data support the idea that hierarchical temporal relation-

ships may be identified and assembled into networks (Fig 5G).

In U2OS cells, cell type-specific TFs synchronized with the cell cycle peaked in G1 (θ-cate-

gory 1) and G1+S (θ-category 2) (Fig 5B). To map potential network connections, these TFs

were overlaid with information on well-established interactions. This analysis revealed con-

nections between SOX6, SOX9, PITX2 and ID2/ID4 (Fig 5H), supporting the association

between the U2OS transcriptome and, for example, cardiac development [42, 43], as suggested

by the GO associations (Fig 5D).

In conclusion, mapping cell-cycle-synchronized expression by TriComp in our data sets

revealed networks of transcriptional regulators that involved more gene categories than has

been generally believed.

Cell-cell signalling via Notch peaks in G2/M-G1

Interestingly, PAX6 and FOXN4, which were found to oscillate over the cell cycle in HeLa cells

and peaked in S+G2/M (θ-category 4) (Fig 5A), upregulate Notch signalling [44, 45]. FOXN4

directly controls DLL4, which peaked in G1 (θ-category 1) (S2 Table). Furthermore, Notch sig-

nalling targets were found to oscillate in our data, with HES7 and HES1 peaking in G1 phase

in HeLa and U2OS cells, respectively (Fig 5A and 5B). Plotting the mRNA expression of
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NOTCH1-3 over the cell cycle confirmed that NOTCH2 expression peaked in G2/M in HeLa

cells (θ-category 5), with a similar trend observed in the U2OS data set (Fig 5I). The less

expressed NOTCH3 significantly oscillated and peaked in G1 in both HeLa and U2OS cells

(S2 Table). The peak expression of full-length NOTCH2 in G2/M was also verified at the pro-

tein level in sorted HeLa-Fucci cells by western blotting using two different antibodies (Fig 5J

and 5K, Panel A in S5 Fig). Analysing the potential oscillation of Notch target genes showed

that NRARP and LFNG peaked in G1, similar to HES7 (Fig 5L). These genes act as a negative

feedback loop to repress Notch gene expression and constitute a transcriptional circuit that

plays a fundamental role in development during, for example, somitogenesis [46–49]. When

exploring our data for receptors other than Notch, members of several classes of receptors

were found to oscillate in HeLa and U2OS cells (Panel B in S4 Fig). Interestingly, among these

were additional components of the somitogenesis network, such as WNT (FZD1/4/7/8/9) and

FGF (FGFR3) signalling [46] and SHH (GLI1, PTCH, SMO) signalling [50] in HeLa cells (S5

Fig). Thus, visualizations based on TriComp analysis in combination with the superimposition

of TF networks revealed that TF networks synchronize with the cell cycle, reproducing the

hierarchy associated with development.

The circadian molecular clock is synchronized with the cell cycle

The Notch and WNT pathways are known to be regulated by the circadian clock [51, 52],

PAX6 is a direct target of the circadian protein CLOCK [53], and SOX4 is controlled by

RORα, which is part of the circadian clock [54] (Fig 3E). The findings imply a coupling

between the circadian clock and the cell cycle. Indeed, the circadian clock has previously been

found to synchronize with the cell cycle in U2OS cells [15] and NIH3T3 cells [14]. Therefore,

we examined if circadian clock constituents also oscillated in our data sets.

The intrinsic cellular circadian molecular clock consists of a transcriptional feedback loop,

in which the BMAL1 (encoded by ARNTL) and CLOCK genes represent the main activating

component and control the feedback repressors CRY1-2 and PER1-3 (overviewed in Fig 6A).

Additional repressors are REV-ERBα and REV-ERBβ (encoded by NR1D1 and NR1D2), and

additional activators are RORα, RORβ and RORγ (encoded by RORA, RORB and RORC). In

HeLa cells, genes from both the activating and repressing sides of the loop were synchronized

with the cell cycle, but with a phase shift (Fig 6B). In U2OS cells, only the repressors were cell-

cycle-synchronized (Panel A in S6 Fig).

We analysed the protein expression of BMAL1, CLOCK and REV-ERBα during the cell

cycle by immunostaining of HeLa-Fucci cells and high-throughput image analysis using Fucci

reporters (CLOCK and REV-ERBα) or DNA content (BMAL1) as indicators of the cell cycle

phase. The protein levels of CLOCK and BMAL1 were cell-cycle-synchronized, peaking in G2/

M, while REV-ERBα peaked at G1 (Fig 6C). Our observations thus support previous reports of

synchronization between the cell cycle and the circadian clock [14, 15].

To extend the analyses to genes downstream of the circadian clock, the transcriptomes of

HeLa and U2OS cells were compared to a published mouse liver circadian transcriptome data

Fig 5. Transcriptional networks in G2/M-G1 phases are associated with developmental programmes. (A, B) Circular plot of θ and r

coordinates for selected cell type-specific TF subfamilies expressed in (A) Hela-Fucci cells or (B) U2OS-Fucci cells (FDR�0.001, logCPM�1,

FC�1.5). (C, D) GO enrichment analysis of the identified oscillating TFs against a background of all TFs. (E) NOTCH mRNA expression levels

(RPKM) in HeLa-Fucci and U2OS-Fucci cells. (F) Representative western blot of total full-length (FL) NOTCH2 and the transmembrane/

intracellular region (NTM/ICD) in sorted HeLa-Fucci cells. (G) Quantitation of western blot data for total NOTCH2 protein expression relative to

the unsorted sample (Student’s t-test; * p<0.05). (H, J, K) mRNA expression of Notch signalling target genes HES7, NRARP and LFNG in the

HeLa-Fucci data set (RPKM). (I) Map of a Notch-dependent oscillator as expressed during embryonic somitogenesis, indicating the key

oscillators HES7, NRARP and LFNG. (L-M) Examples of known relationships between TFs identified to oscillate in synchrony with the cell

cycle in the (L) HeLa-Fucci and (M) U2OS-Fucci data sets. Error bars denote SEM.

https://doi.org/10.1371/journal.pone.0188772.g005
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set [55]. Importantly, the liver data set provides information regarding circadian oscillations in

predominantly non-proliferative cells, thus reducing the mis-attribution of cell cycle genes to

the circadian network. A Venn analysis showed that 35% of the circadian-controlled genes in

the liver significantly oscillated in HeLa cells (Fig 6D). Plotting the θ-values of our HeLa data

set against the circadian clock variable Circadian Time (CT) for each gene in the circadian

transcriptional feedback loop from Yoshitane et al. 2004, verified the temporal segregation of

the activating and repressing parts of the molecular clock loop (Fig 6E). Interestingly, a num-

ber of TFs regulating development were identified to be circadian oscillating in the Yoshitane

et al. data, suggesting that the circadian clock contributes to synchronize developmental tran-

scriptional regulators with the cell cycle (Fig 6F).

To examine the association between the cell cycle and circadian transcriptomes in prolifer-

ating cells, we compared the HeLa and U2OS data sets to a transcriptome of oscillating clock

genes in NIH/3T3 cells [56]. Fifty percent of the circadian-oscillating genes varied over the cell

cycle in HeLa cells, and 13% in U2OS cells (Panel B in S6 Fig). Notably, 27 transcripts were

shared between the circadian clock and the cell cycle in both HeLa and U2OS cells, including

E2F8, Cyclin B2 (CCNB2) and CDK1 (Panel B in S6 Fig), likely reflecting synchronization

between the circadian clock and the cell cycle.

In conclusion, our data suggest that the circadian clock might be an intermediary step in

the synchronization between the cell cycle and the networks of TFs associated with develop-

ment, oscillating in synchrony with the cell cycle (Fig 6F).

Discussion

In this study, we identified that an unexpectedly large number of developmentally associated

TFs assemble into networks that are synchronized with the cell cycle in cancer cells. This

results in a temporal compartmentalization, analogous to spatial patterning during embryo-

genesis. The circadian clock was similarly found to be synchronized with the cell cycle, indicat-

ing a link between the cell cycle and some of the identified TF networks.

The identification of TF networks was greatly aided by a novel algorithm, TriComp, that

allows for easy visualization of expression patterns over the cell cycle, providing more informa-

tion than mere identification of a single point of peak expression. In addition, the algorithm

enables comparisons of data sets even in cases where the underlying temporal variables are cal-

culated differently.

Reactivation of developmental genes has attracted increased interest in the cancer field [57–

59], particularly in cancer stem cells. Examples of TFs that control morphogenesis and play a

role in cancer that were identified to oscillate in our data include PAX6 [60] and GLI1 [41].

Notably, PAX6 was previously found to be dynamically expressed during the cell cycle in neu-

ral progenitor cells, affecting proliferation as well as fate choice during differentiation [61]. In

our study, knowledge from TF networks controlling embryo development was used to deci-

pher relationships between TFs that might assemble into similar networks over the cell cycle.

Fig 6. The circadian clock transcriptional network is synchronized with the cell cycle. (A) Schematic illustrating the

feedback loops of the circadian clock oscillators. (B) Plot of the θ-value for core circadian genes in HeLa-Fucci cells (p-

value�0.001). (C) Protein expression levels of core components of the circadian clock in HeLa-Fucci cells analysed by correlating

fluorescent immunostaining intensity to cell cycle phase determined by Fucci reporters or DNA content (DAPI); bars represent the

mean of the logarithmic intensity of cells relative the average mean logarithmic intensity of all cells. Error bars denote SEM. (D)

Comparison between cell cycle oscillating transcripts in HeLa-Fucci cells (FDR�0.001) and a published circadian clock

transcriptome in non-proliferating liver cells[55]. (E) Plot of the θ-values for core circadian genes in HeLa-Fucci cells (FDR�0.001)

versus the circadian peak values in liver cells reported by Yoshitane H, et al. 2014. (F) Proposed model of the integration of cell

cycle, circadian clock and genes associated with development found to be synchronized with the cell cycle.

https://doi.org/10.1371/journal.pone.0188772.g006
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Our analyses supported the idea that cell-cycle-synchronized expression of developmental

genes might be a consequence of feed-forward transcriptional activation or repression by

“non-core” TFs.

In addition to transcriptional feed-forward coordination, synchronized transcription may

also be a consequence of cell cycle-governed cell signalling. If cell surface receptors are differ-

entially expressed during the cell cycle, the influence of external factors may occur in a cell

cycle-dependent manner, suggesting another dynamic dimension of regulation. Such phase

dependent signalling has been established for the WNT/Frizzled/β-catenin pathway [8, 9]. An

example of temporally restricted signalling in our data was Notch signalling, which is a central

factor in development, controlling cell identity and proliferation [62]. Activated NOTCH2-

ICD protein expression peaked in G2/M and was followed by expression of Notch target genes

in G1 in HeLa cells. In somitogenesis, Notch interacts with the WNT/Frizzled and FGFR sig-

nalling pathways (reviewed in [46, 63, 64]) through a critical negative feedback loop mediated

by HES1 and HES7 [49, 65]. This feedback function appeared to be present in the HeLa and

U2OS cell cycles as well, as HES1 and HES7 oscillated in our data and peaked in G1, where

NOTCH2 expression itself was downregulated.

One unresolved question is what factor(s) synchronize “non-core” transcription and signal-

ling with the cell cycle. A candidate is the circadian clock. Our data show that the circadian

clock oscillates in synchrony with the cell cycle in HeLa cells, as was previously shown for

U2OS [15] and NIH/3T3 [56] cells. Signalling via the Notch and the WNT/Frizzled pathways

has previously been shown to be controlled by the circadian clock [51, 52], and several of the

TFs identified in our data (e.g., PAX6) may be targets of the circadian clock [53]. Further sup-

porting such a conclusion is that the circadian TFs CLOCK and BMAL1 peaked in G2, i.e., the

same phase as NOTCH2 in our data. However, the reciprocal interaction and synchronization

between the cell cycle and the circadian clock, as well as other networks suggested by our data,

pose a challenge when trying to identify which oscillatory system is in control of the expression

profile of a particular gene.

Non-core cell cycle transcriptional networks such as the circadian clock resemble the non-

essential transcription factor networks that oscillate in a self-sustained manner in yeast [12,

13]. One outcome from interactions between cellular oscillators is the establishment of tempo-

rally constrained signalling and gene expression, i.e., temporal compartmentalization. Such

compartmentalization may provide opportunities for unique combinatorial effects when

unique sets of oscillating TFs are temporally co-expressed. This resembles the processes

whereby spatial compartmentalization and patterning is established in development [66, 67].

An additional interpretation of the data is that cell identity oscillates during the cell cycle, and

this oscillation might determine the onset and direction of differentiation. Altogether, these

perspectives reveal unexpected dynamics in transcriptional states, between which a cancer cell

fluctuates when progressing through the cell cycle. Understanding these discrete states will

have implications in target selection when developing cancer cell therapies, as expression levels

as well as the cellular context of the target may change over the cell cycle. As the circadian

rhythm appears to be a component in controlling the phase of these oscillations, our data sug-

gest that the time of drug administration can be chosen to match the peak expression of the

target, allowing for a higher therapeutic efficacy.

Experimental procedures

Cell culture

HeLa.S-Fucci and U2OS-Fucci are variants of the human cervical carcinoma cell line HeLa.S

and the osteosarcoma cell line U2OS that express mKo2-hCdt1(30–120) and mAg-hGem(1–
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110)[20]. The HeLa.S-Fucci cell line was obtained from Riken Cell Bank, and the U2OS-Fucci

cell line was a kind gift from Dr. Masai at the Tokyo Metropolitan Institute of Medical Science,

Japan.

HeLa.S-Fucci cells were grown in Dulbecco’s modified Eagle’s medium (DMEM), and

U2OS-Fucci cells were grown in McCoy’s modified medium, both supplemented with 10%

foetal bovine serum (FBS), 5% Glutamax and 100 U/ml penicillin-streptomycin (all from

Gibco, Invitrogen), at 37˚C in a 5% CO2 humidified atmosphere. The cells were dissociated by

trypsinization (TrypLE Express 1x) (Gibco, Invitrogen).

Flow cytometry

Cells were grown to ~80% confluency, collected by trypsinization, washed with complete

DMEM/McCoy’s with 10% FBS, 5% Glutamax and 100U/ml penicillin-streptomycin, spun

down by centrifugation at 200 g for 5 minutes and resuspended in culture medium. The cells

were sorted based on different laser emission wavelengths simultaneously by defining three

regions for sorting: G1, S and G2/M phases. Additionally, a control group of all three phases

were collected. See S1 Table for Minimal Information of a Flow Cytometry experiment

(MIFlowCyt).

For western blot 500 000 cells per phase were collected in PBS, spun down and resuspended

in 100 μl of lysis buffer (1% SDS, 10% glycerol, 100 mM Tris/HCl pH 7.5). For each phase,

post-sorting control was performed (see Panel B in S2 Fig).

RNA extraction, RNA sequencing and data analysis

Total RNA was extracted from sorted cells using an RNeasy Micro Kit (Qiagen) following the

manufacturer’s instructions. The RNA concentration and quality were assessed using the

Qubit RNA assay kit (Invitrogen). We used 300 ng of total RNA to prepare the TruSeq library,

for which we used the Illumina Low-Throughput TruSeq RNA Sample Preparation Kit proto-

col, resulting in barcoded cDNA. Next, 50 ng of barcoded TruSeq products were used for Illu-

mina RNA sequencing on an Illumina HiSeq 2000 sequencer to generate single-end 50 or

51-nucleotide reads according to the manufacturer’s protocol and as previously described

[68]. The expression levels of each sample were normalized as Reads Per Kilobase Per Million

(RPKM) by dividing the read count of each transcript model with its length and scaling the

total per sample to one million.

Transcriptome data analysis

Differential gene expression analysis was performed on the mapped read counts using an

ANOVA-like approach in the edgeR package in R [23], correcting for common, trended and

tagwise disparity. For the HeLa cells (three batches), the GLM model was simply (Expression ~

Cell cycle phase). For the U2OS cells (two batches), the samples were corrected for batch-spe-

cific effects by including the batch in the GLM model (Expression ~ Cell cycle phase + Batch).

This analysis supplied p-values, logFC differences between groups, and FDR-values.

A “Highest-logFC” variable was created by finding the largest logFC difference between any

two cell cycle phases.

TriComp: Converting logarithmic FCs into polar relationship descriptor variables

Starting with the log2FC differences between groups 2 and 1, “logFCGr2overGr1”, and

groups 3 and 1, “logFCGr3overGr1”, the TriComp algorithm consists of four equations. First,

it creates two variables (a and b) used for plotting the circular graphs, in which direction from

the centre denotes the relationship between the three groups and distance from the centre
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denotes the intensity of the respective relationship:

a ¼ logFCGr3overGr1þ Sin
Pi
6

� �

� logFCGr2overGr1 ð1Þ

b ¼ Cos
p

6

� �
� logFCGr2OverGr1 ð2Þ

Then, TriComp calculates the polar coordinates (r, θ) with (a = 0, b = 0) used for (r = 0)

and θ starting at 0 straight up and going clockwise. Calculating θ requires four different equa-

tions depending on what quadrant it belongs to.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

ð3Þ

IF ða � 0 & b > 0Þ THEN y ¼ tan� 1
a
b

� �
ELSEIF ða � 0 & b < 0Þ THEN y ¼ 180��

tan� 1
a
b

� �
ELSEIF ða < 0 & b < 0Þ THEN y ¼ 180� þ tan� 1

a
b

� �
ELSEIF ða < 0 & b >

0Þ THEN y ¼ 360� � tan� 1
a
b

� �
ELSEIF ðb ¼ 0 & a > 0Þ THEN y ¼ 90� ELSEIF ðb ¼

0 & a < 0Þ THEN y ¼ 270�

ð4Þ

Calculating which group each gene belongs to according to Fig 2A is performed using the

following equation:

Group ¼ Int
y

60�

� �

þ 1 ð5Þ

In the graph using the Euclidean coordinates a and b, θ and r are the corresponding polar

coordinates.

Immunofluorescence

For antibodies generated within the Human Protein Atlas (MYBL2, TGIF1, HMGB2, KDM5B),

immunostaining was performed on cells grown on glass bottom plates (Whatman Inc.) coated

with 50 μg of 12.5 μg/ml human fibronectin (VWR). Approximately 8 000 cells were seeded in

each well and incubated at 37˚C for 24 hours. After washing with PBS, the cells were fixed with

40 μl of 4% ice cold PFA (Sigma Aldrich) dissolved in growth medium supplemented with 10%

serum for 15 minutes and permeabilized with 40 μl of 0.1% Triton X-100 (Sigma Aldrich) in PBS

for 3x5 minutes. Primary antibodies (HPA055416, MYBL2; HPA062160, TGIF1; HPA053314,

HMGB2; HPA053723, KDM5B) were diluted to 2.5 μg/ml in blocking buffer (PBS + 4% FBS)

containing 3.3 μg/ml mouse anti-tubulin (Abcam, ab7291, Cambridge, UK). After washing with

PBS, diluted primary antibodies were added (40 μl/well), and the plates were incubated overnight

(ON) at 4˚C. After the ON incubation, all wells were washed with PBS for 3x10 minutes. Goat

anti-mouse Alexa Fluor 405-conjugated (A31553, ThermoFisher) and goat anti-rabbit Alexa

Fluor 647-conjugated (A21245, ThermoFisher) secondary antibodies diluted to 2.5 μg/ml in

blocking buffer were added, and the plates were incubated for 90 minutes at room temperature

(RT). After washing with PBS, all wells were mounted with PBS containing 76.5% glycerol.

Image acquisition was performed with a Leica SP5 confocal microscope equipped with a 63-x/

1.4 NA oil immersion objective with the support of LAS AF matrix software. Six images were

acquired per sample at RT in three sequential steps with the following scanning settings: pinhole

1 Airy unit, 16-bit acquisition and a pixel size of 80x80 nm. The z focus-level was manually
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adjusted to represent the best visualization of the target protein. The detector gain remained con-

stant for the Fucci markers and microtubules across all samples.

For immunostaining of circadian clock proteins and PAX6, cells were seeded in 96-well

glass bottom microplates (BD Falcon) at a density 2.5x103 cells/well ON. The next day, the

cells were fixed in 4% paraformaldehyde (PFA) in PBS for 15 minutes at RT. Fixed cells were

washed with PBS and permeabilized with 0.3% Triton X-100 in PBS (PBST). After blocking

(1% BSA in PBST) for 1 hour at RT, the cells were incubated with a primary antibody diluted

in 1% BSA in PBST ON at 4˚C. On day 3, the cells were washed 3X with PBST. Before incuba-

tion with a fluorescence-labelled secondary antibody, the cells were blocked with 1% BSA in

PBST for 30 minutes at RT. To remove cellular RNA, cells were incubated with RNase (20 μg/

ml) in PBS for 1 hour at 4˚C. Nuclei were counterstained with DAPI (5 μg/ml) in staining

buffer (100 mM Tris, pH 7.8; 150 mM NaCl; 1 mM KCl; 0.5 mM MgCl2; 0.1% Nonidet P-40)

for 30 minutes at RT.

The primary antibodies used were as follows: Pax6 (1:300; Biolegend), BMAL1 (1:100;

NB100-2288, Novus Biological), CLOCK (1:100; PA1-520, Pierce), and REV-ERBα (1:200;

H00009572-M02, Abnova). The secondary antibody used was an Alexa Fluor 647-conjugated

anti-rabbit antibody (1:1000, Invitrogen).

For EdU incorporation analysis, the cells were grown, fixed and permeabilized as above,

but incubated with 10μM EdU 30 min before fixation, then after permeabilization incubated

30min at room temperature with 2μM Alexa 647-conjugated Azide, 10 mM ascorbic acid, 2.5

mM CuSo4 in PBS. DAPI staining was performed by a 1h incubation at 4˚C with10μg/mL

RNAse A followed by 10 minutes of 1 μg/mL DAPI in PBS at room temperature.

All plates were imaged on an ImageXpress imaging system (Molecular Devices) at 10X

magnification, and segmentation of nuclei and measurement of fluorescence intensities were

performed in CellProfiler [69]. Per-object measurements were categorized and intensities

were analysed in R.

Western blot

Protein lysates of sorted cells were separated by SDS-PAGE on 8% acrylamide gels and blotted

onto PVDF membranes (Millipore). The membranes were incubated with primary rabbit anti-

NOTCH2 antibodies N4913 (Sigma Aldrich) (Fig 6F and 6G) or D67C8 (Cell Signaling Tech-

nology) (Fig 6G, Panel A in S4 Fig) or a mouse anti-β-ACTIN (Abcam, ab8226) antibody ON

at 4˚C and with HRP-conjugated secondary antibodies (1:1000 Sigma Aldrich) at RT for 1 h.

The membranes were developed using an ECL detection reagent (GE Healthcare) and a

charge-coupled device camera (Bio-Rad, US). Non-saturated immunoblots were analysed by

ImageJ, and protein abundances were normalized to β-ACTIN.

Statistical tools, visualization tools and bioinformatics

R[70] with attached packages ggplot2 [71], dplyr [72], mapplots [73] and XNomial [74] was

used for statistical analysis, processing of immunofluorescence data, and visualization. Graph-

Pad PRISM 6 was used for statistical analyses and data visualization. DAVID [75] (https://

david.ncifcrf.gov) was used for gene ontology data analyses.

Data availability

The raw read counts, RPKM values and statistical data from EdgeR have been made available

as a GEO submission (#GSE104736)
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Supporting information

S1 Fig. Non-synchronized Fucci based cell phase sorting and RNA sequencing to identify

cycling transcripts. (A) Using high-throughput imaging analysis, U2OS Fucci cells were

stained and imaged for DAPI, EdU incorporation and Fucci status. Results are first shown sep-

arately (top and bottom left), then classified according to DNA status according to DAPI and

EdU, and summaries overlaid on a grid of the Fucci variables (right).

(EPS)

S2 Fig. Examples of relative distribution of transcripts in cell cycle phases. (A) Live HeLa-

Fucci cells were sorted in 3 cell cycle populations based on expression of Fucci markers. (B) Post-

sort validation was done by flow cytometry analysis of expression of Fucci markers as well as of

DNA content (staining by propidium iodide, PI). (C, D) Analysis of transcriptome data from

HeLa-Fucci and U2OS-Fucci cells by plotting the maximum fold-change (FC) difference between

any two cell cycle phase groups against the logarithmic expression level (logarithmic Counts per

Million reads (logCPM)) for each transcript. The vast majority of all genes with FDR�0.001 (data

indicated in red) also had an FC of at least 1.1. (E, F) Summary of statistical analysis of oscillating

transcripts in (E) HeLa-Fucci and (F) U2OS-Fucci cells. (G) A table showing example θ values,

their categories and relative gene expression profiles between the three cell cycle phases.

(TIF)

S3 Fig. (A) A comparison between HeLa-Fucci cell cycle transcriptome and the Whitfield

et al. data set [19] indicates number of shared transcripts. (B) Distribution plots of the θ value

for HeLa-Fucci versus the full hit-list of the Seed Match Category reported by [18]. (C)

STRING analysis (using the web interphase available at http://string-db.org) of TFs synchro-

nized with the cell cycle at FDR�0.001. The STRING analysis was set at highest confidence

(0.900) and included all interaction sources.

(EPS)

S4 Fig. (A) Protein expression levels of PAX6 in HeLa-Fucci cells analyzed by fluorescent

imaging correlating immunostaining of PAX6 to cell cycle phase determined by DNA content

(DAPI), represented as boxplots. (B) Examples of receptors and associated proteins signifi-

cantly oscillating in HeLa and U2OS cells at FDR�0.001.

(EPS)

S5 Fig. A schematic illustration of a network incorporating FGF, Notch and WNT signal-

ing oscillates over the cell cycle.

(EPS)

S6 Fig. Molecular clock synchronization with the cell cycle. (A) Plot of the θ-value for core

circadian genes in U2OS-Fucci cells (p-value�0.001). (B) Venn diagram between cell cycle

oscillating transcripts in U2OS-Fucci (FDR�0.001), HeLa-Fucci cells (FDR�0.001) and pub-

lished circadian clock transcriptome in non-proliferating liver cells [55].

(EPS)

S1 Table. MiFlowCyt—Hela Fucci and U2OS Fucci sortings.

(PDF)

S2 Table. RNA sequencing and TriComp data.

(CSV)

S3 Table. GO cell cycle term summaries.

(XLSX)
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S4 Table. Transcription factor results.

(XLSX)

S5 Table. GO term enrichment of developmental transcription factors.

(XLSX)
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Bryja, Petra Sekyrova, Mikael Altun, Michael Andäng.
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