J. For. Sci., 2023, 69(5):205-216 | DOI: 10.17221/17/2023-JFS

The effect of thinning intensity on sap flow and growth of Norway spruceOriginal Paper

Ina Zavadilová ORCID...1.2, Justyna Szatniewska1, Marko Stojanović ORCID...1, Peter Fleischer Jr. ORCID...3,4,5, Lukáš Vágner1, Marian Pavelka ORCID...1, Peter Petrík ORCID...6
1 Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
2 Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
3 Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia.
4 Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
5 Administration of Tatra National Park, Tatranska Lomnica, Slovakia
6 Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research – Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany

Forest thinning can be used as an adaptive measure to improve the growth and resistance of Norway spruce forests affected by climate change. The impact of different thinning intensities on sap flow, growth, and tree water deficit of 40-year-old Norway spruce was tested. High thinning intensity (–61% of basal area) resulted in increased tree-level sap flow compared to the control (+27%), but it caused a decrease in the stand-level transpiration (–34%) due to reduced leaf area index. Low-intensity thinning (–28% basal area), high-intensity thinning, and control showed similar responses of sap flow to vapour pressure deficit and global radiation, suggesting unchanged isohydric behaviour. Both low- and high-intensity treatments displayed greater radial growth than the control. There were no differences in tree water deficit between the treatments. The low-intensity treatment can be considered the best water utilisation treatment with increased growth and unchanged transpiration at the tree level. The high-intensity treatment had similar radial growth as the low-intensity but lower stand-level transpiration, implying improved soil water availability. The study expands the ecophysiological understanding of thinning as a valuable silvicultural practice for adapting forest management of Norway spruce to the effects of climate change.

Keywords: increment; Picea abies; silviculture; transpiration; tree water deficit

Received: February 15, 2023; Revised: April 3, 2023; Accepted: April 12, 2023; Prepublished online: May 23, 2023; Published: May 29, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zavadilová I, Szatniewska J, Stojanović M, Fleischer P, Vágner L, Pavelka M, Petrík P. The effect of thinning intensity on sap flow and growth of Norway spruce. J. For. Sci.. 2023;69(5):205-216. doi: 10.17221/17/2023-JFS.
Download citation

Supplementary files:

Download file17-2023-JFS_ESM.pdf

File size: 157.11 kB

References

  1. Ara M., Berglund M., Fahlvik N., Johansson U., Nilsson U. (2022): Pre-commercial thinning increases the profitability of Norway spruce monoculture and supports Norway spruce-birch mixture over full rotations. Forests, 13: 1156. Go to original source...
  2. Bhandari S.K., Veneklaas E.J., McCaw L., Mazanec R., Whitford K., Renton M. (2021): Effect of thinning and fertilizer on growth and allometry of Eucalyptus marginata. Forest Ecology and Management, 479: 118594. Go to original source...
  3. Bianchi S., Huuskonen S., Hynynen J., Siipilehto J., Niemistö P. (2022): Tree-level differences in Norway spruce and Scots pine growth after extreme thinning treatments. Scandinavian Journal of Forest Research, 37: 109-118. Go to original source...
  4. Bosela M., Tumajer J., Cienciala E., Dobor L., Kulla L., Marčiš P., Popa I., Sedmák R., Sedmáková D., Sitko R., Šebeň V., Štěpánek P., Büntgen U. (2021): Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000. Science of The Total Environment, 752: 141794. Go to original source... Go to PubMed...
  5. Campbell J., Alberti G., Martin J., Law B.E. (2009): Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. Forest Ecology and Management, 257: 453-463. Go to original source...
  6. Cao T., Valsta L., Härkönen S., Saranpää P., Mäkelä A. (2008): Effects of thinning and fertilization on wood properties and economic returns for Norway spruce. Forest Ecology and Management, 256: 1280-1289. Go to original source...
  7. Čermák J., Kučera J., Nadezhdina N. (2004): Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18: 529-546. Go to original source...
  8. Clausnitzer F., Köstner B., Schwärzel K., Bernhofer C. (2011): Relationships between canopy transpiration, atmospheric conditions and soil water availability - Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agricultural and Forest Meteorology, 151: 1023-1034. Go to original source...
  9. Dušek D., Novák J., Kacálek D., Slodičák M. (2021): Norway spruce production and static stability in IUFRO thinning experiments in the Czech Republic. Journal of Forest Science, 67: 185-194. Go to original source...
  10. Ehrenberger W., Rüger S., Fitzke R., Vollenweider P., Günthardt-Goerg M., Kuster T., Zimmerman U., Arend, M. (2012): Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. Functional Plant Biology, 39: 297-305. Go to original source... Go to PubMed...
  11. Eliasson L., Lageson H. (1999): Simulation study of a single-grip harvester in thinning from below and thinning from above. Scandinavian Journal of Forest Research, 14: 589-595. Go to original source...
  12. Fernandes T.J.G., Del Campo A.D., Herrera R., Molina A.J. (2016): Simultaneous assessment, through sap flow and stable isotopes, of water use efficiency (WUE) in thinned pines shows improvement in growth, tree-climate sensitivity and WUE, but not in WUEi. Forest Ecology and Management, 361: 298-308. Go to original source...
  13. Fernandez I., Álvarez-González J.G., Carrasco B., Ruíz-González A.D., Cabaneiro A. (2012): Post-thinning soil organic matter evolution and soil CO2 effluxes in temperate radiata pine plantations: Impacts of moderate thinning regimes on the forest C cycle. Canadian Journal of Forest Research, 42: 1953-1964. Go to original source...
  14. Forrester D.I., Collopy J.J., Beadle C.L., Baker T.G. (2013): Effect of thinning, pruning and nitrogen fertiliser application on light interception and light-use efficiency in a young Eucalyptus nitens plantation. Forest Ecology and Management, 288: 21-30. Go to original source...
  15. Gebauer R., Volařík D., Urban J., Børja I., Nagy N.E., Eldhuset T.D., Krokene P. (2011): Effect of thinning on anatomical adaptations of Norway spruce needles. Tree Physiology, 31: 1103-1113. Go to original source... Go to PubMed...
  16. Gebhardt T., Häberle K.H., Matyssek R., Schulz C., Ammer C. (2014): The more, the better? Water relations of Norway spruce stands after progressive thinning. Agricultural and Forest Meteorology, 197: 235-243. Go to original source...
  17. Gspaltl M., Bauerle W., Binkley D., Sterba H. (2013): Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes. Forest Ecology and Management, 288: 49-59. Go to original source... Go to PubMed...
  18. Hillayová M.K., Holušová K., Báliková K., Holécy J. (2022): Comparison of the approach to determination of the rotation period of forest stands in the Czech Republic and in the Slovak Republic. Journal of Forest Science, 68: 413-422. Go to original source...
  19. Holm S. (1979): A Simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6: 65-70.
  20. Houtmeyers S., Brunner A. (2020): Thinning responses of individual trees in mixed stands of Norway spruce and Scots pine. Scandinavian Journal of Forest Research, 35: 351-366. Go to original source...
  21. Jaakkola T., Mäkinen H., Saranpää P. (2005): Wood density in Norway spruce: Changes with thinning intensity and tree age. Canadian Journal of Forest Research, 35: 1767-1778. Go to original source...
  22. Jiménez M.N., Navarro F.B., Sánchez-Miranda A., Ripoll M.A. (2019): Using stem diameter variations to detect and quantify growth and relationships with climatic variables on a gradient of thinned Aleppo pines. Forest Ecology and Management, 442: 53-62. Go to original source...
  23. Kellomäki S., Strandman H., Kirsikka-Aho S., Kirschbaum M.U., Peltola H. (2023): Effects of thinning intensity and rotation length on albedo- and carbon stock-based radiative forcing in boreal Norway spruce stands. Forestry: An International Journal of Forest Research, 2023: cpac058. Go to original source...
  24. Kenkel N.C. (1988): Pattern of self-thinning in jack pine: Testing the random mortality hypothesis. Ecology, 69: 1017-1024. Go to original source...
  25. Kohler M., Sohn J., Nägele G., Bauhus J. (2010): Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? European Journal of Forest Research, 129: 1109-1118. Go to original source...
  26. Krajnc L., Farrelly N., Harte A.M. (2019): The effect of thinning on mechanical properties of Douglas fir, Norway spruce, and Sitka spruce. Annals of Forest Science, 76: 3. Go to original source...
  27. Krejza J. (2016): Vliv probírkového zásahu na sekvestraci uhlíku a strukturu porostu [Ph.D. Thesis.] Brno, Mendel University in Brno. (in Czech)
  28. Krejza J., Cienciala E., Světlík J., Bellan M., Noyer E., Horáček P., Štěpánek P., Marek M.V. (2021): Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 35: 103-119. Go to original source...
  29. Krejza J., Haeni M., Darenova E., Foltýnová L., Fajstavr M., Světlík J., Nezval O., Bednář P., Šigut L., Horáček P., Zweifel R. (2022): Disentangling carbon uptake and allocation in the stems of a spruce forest. Environmental and Experimental Botany, 196: 104787. Go to original source...
  30. Kučera J., Vaníček R., Urban J. (2020): Automated exponential feedback weighting method for subtraction of heat losses from sap flow measured by the trunk heat balance method. Acta Horticulturae. 1300: 81-88. Go to original source...
  31. Lagergren F., Lindroth A. (2004): Variation in sapflow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden. Forest Ecology and Management, 188: 51-63. Go to original source...
  32. Lagergren F., Lankreijer H., Kučera J., Cienciala E., Mölder M., Lindroth A. (2008): Thinning effects on pine-spruce forest transpiration in central Sweden. Forest Ecology and Management, 255: 2312-2323. Go to original source...
  33. Laurent M., Antoine N., Joël G. (2003): Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management, 183: 47-60. Go to original source...
  34. Lin C.J., Laiho O., Lähde E. (2012): Norway spruce (Picea abies L.) regeneration and growth of understory trees under single-tree selection silviculture in Finland. European Journal of Forest Research, 131: 683-691. Go to original source...
  35. Mäkinen H., Isomäki A. (2004): Thinning intensity and growth of Norway spruce stands in Finland. Forestry: An International Journal of Forest Research, 77: 349-364. Go to original source...
  36. McJannet D., Vertessy R. (2001): Effects of thinning on wood production, leaf area index, transpiration and canopy interception of a plantation subject to drought. Tree Physiology, 21: 1001-1008. Go to original source... Go to PubMed...
  37. Niccoli F., Pelleri F., Manetti M.C., Sansone D., Battipaglia G. (2020): Effects of thinning intensity on productivity and water use efficiency of Quercus robur L. Forest Ecology and Management, 473: 118282. Go to original source...
  38. Pardos M., del Río M., Pretzsch H., Jactel H., Bielak K., Bravo F., Brazaitis G., Defossez E., Engel M., Godvod K., Jacobs K., Jansone L., Jansons A., Morin X., Nothdurft A., Oreti L., Ponette Q., Pach M., Riofrío J., Ruíz-Peinado R., Tomao A., Uhl E., Calama R. (2021): The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 481: 118687. Go to original source...
  39. Park J., Kim T., Moon M., Cho S., Ryu D., Kim H.S. (2018): Effects of thinning intensities on tree water use, growth, and resultant water use efficiency of 50-year-old Pinus koraiensis forest over four years. Forest Ecology and Management, 408: 121-128. Go to original source...
  40. Pashkovskiy P.P., Vankova R., Zlobin I.E., Dobrev P., Ivanov Y.V., Kartashov A.V., Kuzentson V.V. (2019): Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in Scots pine and Norway spruce seedlings under water deficit. Plant Physiology and Biochemistry, 140: 105-112. Go to original source... Go to PubMed...
  41. Phillips N., Bergh J., Oren R., Linder S. (2001): Effects of nutrition and soil water availability on water use in a Norway spruce stand. Tree Physiology, 21: 851-860. Go to original source... Go to PubMed...
  42. Powers M.D., Palik B.J., Bradford J.B., Fraver S., Webster C.R. (2010): Thinning method and intensity influence long-term mortality trends in a red pine forest. Forest Ecology and Management, 260: 1138-1148. Go to original source...
  43. Preisler Y., Tatarinov F., Grünzweig J.M., Yakir D. (2021): Seeking the "point of no return" in the sequence of events leading to mortality of mature trees. Plant, Cell & Environment, 44: 1315-1328. Go to original source... Go to PubMed...
  44. Pretzsch H., Mette T. (2008): Linking stand-level self-thinning allometry to the tree-level leaf biomass allometry. Trees, 22: 611-622. Go to original source...
  45. Reventlow D.O.J., Nord-Larsen T., Biber P., Hilmers T., Pretzsch H. (2021): Simulating conversion of even-aged Norway spruce into uneven-aged mixed forest: effects of different scenarios on production, economy and heterogeneity. European Journal of Forest Research, 140: 1005-1027. Go to original source...
  46. Rimal S., Djahangard M., Yousefpour R. (2022): Forest management under climate change: A decision analysis of thinning interventions for water services and biomass in a Norway spruce stand in south Germany. Land, 11: 446. Go to original source...
  47. Salomón R.L., Peters R.L., Zweifel R., Sass-Klaassen U.G., Stegehuis A.I., Smiljanic M., Poyatos R., Babst F., Cienciala E., Fonti P., et al. (2022): The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 13: 28. Go to original source... Go to PubMed...
  48. Schäfer C., Rötzer T., Thurm E.A., Biber P., Kallenbach C., Pretzsch H. (2019): Growth and tree water deficit of mixed Norway spruce and European beech at different heights in a tree and under heavy drought. Forests, 10: 577. Go to original source...
  49. Sedmáková D., Sedmák R., Kúdela P., Ďurica P., Saniga M., Jaloviar P., Kucbel S. (2022): Divergent growth responses of healthy and declining spruce trees to climatic stress: A case study from the Western Carpathians. Dendrochronologia, 76: 126023. Go to original source...
  50. Skovsgaard J.P., Stupak I., Vesterdal L. (2006): Distribution of biomass and carbon in even-aged stands of Norway spruce (Picea abies (L.) Karst.): A case study on spacing and thinning effects in northern Denmark. Scandinavian Journal of Forest Research, 21: 470-488. Go to original source...
  51. Sohn J.A., Gebhardt T., Ammer C., Bauhus J., Häberle K.H., Matyssek R., Grams T.E. (2013): Mitigation of drought by thinning: Short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). Forest Ecology and Management, 308: 188-197. Go to original source...
  52. Světlík J. (2016): Struktura dospělého vrchovinného smrkového porostu [Ph.D. Thesis.] Brno, Mendel University in Brno. (in Czech)
  53. Szatniewska J., Zavadilova I., Nezval O., Krejza J., Petrik P., Čater M., Stojanović M. (2022): Species-specific growth and transpiration response to changing environmental conditions in floodplain forest. Forest Ecology and Management, 516: 120248. Go to original source...
  54. Tsamir M., Gottlieb S., Preisler Y., Rotenberg E., Tatarinov F., Yakir D., Tague C., Klein T. (2019): Stand density effects on carbon and water fluxes in a semi-arid forest, from leaf to stand-scale. Forest Ecology and Management, 453: 117573. Go to original source...
  55. Wang Y., Wei X., del Campo A.D., Winkler R., Wu J., Li Q., Liu W. (2019): Juvenile thinning can effectively mitigate the effects of drought on tree growth and water consumption in a young Pinus contorta stand in the interior of British Columbia, Canada. Forest Ecology and Management, 454: 117667. Go to original source...
  56. Ward E.J., Oren R., Sigurdsson B.D., Jarvis P.G., Linder S. (2008): Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees. Tree Physiology, 28: 579-596. Go to original source... Go to PubMed...
  57. Yang J., He Z., Lin P., Du J., Tian Q., Feng J., Liu Y., Guo L., Wang G., Yan J., Zhao W. (2022): Variability in minimal-damage sap flow observations and whole-tree transpiration estimates in a coniferous forest. Water (Switzerland), 14: 2551. Go to original source...
  58. Zavadilová I., Szatniewska J., Petrík P., Mauer O., Pokorný R., Stojanović M. (2023): Sap flow and growth response of Norway spruce under long-term partial rainfall exclusion at low altitude. Frontiers in Plant Science, 14: 317. Go to original source... Go to PubMed...
  59. Zhang H., Simmonds L.P., Morison J.I.I., Payne D. (1997): Estimation of transpiration by single trees: Comparison of sap flow measurements with a combination equation. Agricultural and Forest Meteorology, 87: 155-169. Go to original source...
  60. Zhang X., Wang Y., Wang Y., Zhang S., Zhao X. (2019): Effects of social position and competition on tree transpiration of a natural mixed forest in Chongqing, China. Trees, 33: 719-732. Go to original source...
  61. Zweifel R. (2016): Radial stem variations-a source of tree physiological information not fully exploited yet. Plant, Cell & Environment, 39: 231-232. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.