Skip to main content

Properties of the Weighted and Robust Implicitly Weighted Correlation Coefficients

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14262))

Included in the following conference series:

  • 641 Accesses

Abstract

Pearson product-moment correlation coefficient represents a fundamental measure of similarity between two data vectors. In various applications, it is meaningful to consider its weighted version known as the weighted Pearson correlation coefficient. Its properties are studied in this theoretical paper; these include the robustness to rounding, as it is an important issue in approximate neurocomputing, or specific robustness properties for the context of template matching in image analysis. For a highly robust correlation coefficient inspired by the least weighted estimator, properties are derived and novel hypothesis tests are proposed. This robust measure is recommendable particularly for data contaminated by outliers (not only) in the context of image analysis.

The research was supported by the grant 22-02067S “Approximate Neurocomputing” of the Czech Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsahafi, Y.S., Kassem, M.A., Hosny, K.M.: Skin-Net: a novel deep residual network for skin lesions classification using multilevel feature extraction and cross-channel correlation with detection of outlier. J. Big Data 10, 105 (2023)

    Article  Google Scholar 

  2. Azar, J., Makhoul, A., Barhamgi, M., Couturier, R.: An energy efficient IoT data compression approach for edge machine learning. Futur. Gener. Comput. Syst. 96, 168–175 (2019)

    Article  Google Scholar 

  3. Bilan, S., Yuzhakov, S.: Pattern Recognition Based on Parallel Shift Technology. CRC Press, Boca Raton (2018)

    Google Scholar 

  4. Böhringer, S., de Jong, M.A.: Quantification of facial traits. Front. Genet. 10, 397 (2019)

    Article  Google Scholar 

  5. Borenstein, M., Hedges, L.V., Higgins, J.P.T., Rothstein, H.R.: Introduction to Meta-analysis, 2nd edn. Wiley, Chichester (2021)

    Book  MATH  Google Scholar 

  6. Botvinik-Nezer, R., Holzmeister, F., Camerer, C.F., Dreber, A., Huber, J., et al.: Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582, 84–88 (2020)

    Article  Google Scholar 

  7. Čížek, P.: Semiparametrically weighted robust estimation of regression models. Comput. Stat. Data Anal. 55, 774–788 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delaigle, A., Hall, P.: Achieving near perfect classification for functional data. J. Roy. Stat. Soc. 74, 267–286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferrari, C., Berretti, S., Bimbo, A.D.: Discovering identity specific activation patterns in deep descriptors for template based face recognition. 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 1–5 (2019)

    Google Scholar 

  10. Gamel, S.A., Hassan, E., El-Rashidy, N., Talaat, F.M.: Exploring the effects of pandemics on transportation through correlations and deep learning techniques. Multimed. Tools Appl. (2023)

    Google Scholar 

  11. Gao, B., Spratling, M.W.: Robust template matching via hierarchical convolutional features from a shape biased CNN. In: Yao, J., Xiao, Y., You, P., Sun, G. (eds.) The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021). LNEE, vol. 813, pp. 333–344. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6963-7_31

    Chapter  Google Scholar 

  12. Guyll, M., Madon, S., Yang, Y., Wells, G.: Validity of forensic cartridge-case comparisons. Psychol. Cogn. Sci. 120, e2210428120 (2023)

    Google Scholar 

  13. Jurečková, J., Picek, J., Schindler, M.: Robust Statistical Methods with R, 2nd edn. CRC Press, Boca Raton (2019)

    Book  MATH  Google Scholar 

  14. Kalina, J.: Robust coefficients of correlation or spatial autocorrelation based on implicit weighting. J. Korean Stat. Soc. 51, 1247–1267 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kalina, J., Matonoha, C.: A sparse pair-preserving centroid-based supervised learning method for high-dimensional biomedical data or images. Biocybern. Biomed. Eng. 40, 774–786 (2020)

    Article  Google Scholar 

  16. Kalina, J., Tichavský, J.: On robust estimation of error variance in (highly) robust regression. Meas. Sci. Rev. 20, 6–14 (2020)

    Article  Google Scholar 

  17. Naeem, A., Anees, T., Ahmed, K.T., Naqvi, R.A., Ahmad, S., Whangbo, T.: Deep learned vectors formation using auto-correlation, scaling, and derivations with CNN for complex and huge image retrieval. Complex Intell. Syst. 9, 1729–1751 (2023)

    Article  Google Scholar 

  18. Rao, C.R.: Linear Statistical Inference and Its Applications. Wiley, New York (2002)

    Google Scholar 

  19. Rather, A.A., Chachoo, M.A.: Robust correlation estimation and UMAP assisted topological analysis of omics data for disease subtyping. Comput. Biol. Med. 155, 106640 (2023)

    Article  Google Scholar 

  20. Saleh, A.K.M.E., Picek, J., Kalina, J.: R-estimation of the parameters of a multiple regression model with measurement errors. Metrika 75, 311–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, L., Sun, H., Wang, J., Wu, S., Zhao, Y., Xu, Y.: Breast mass detection in mammography based on image template matching and CNN. Sensors 2021, 2855 (2021)

    Article  Google Scholar 

  22. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient Processing of Deep Neural Networks. Morgan & Claypool Publishers, San Rafael (2020)

    Book  MATH  Google Scholar 

  23. Víšek, J.Á.: Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47, 179–206 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Yang, H., Zheng, K., Li, J.: Open set recognition of underwater acoustic targets based on GRU-CAE collaborative deep learning network. Appl. Acoust. 193, 108774 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Jakub Krett for numerical experiments motivating this work and to Jiří Šíma and Václav Šmídl for discussion about Sect. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Vidnerová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalina, J., Vidnerová, P. (2023). Properties of the Weighted and Robust Implicitly Weighted Correlation Coefficients. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14262. Springer, Cham. https://doi.org/10.1007/978-3-031-44201-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44201-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44200-1

  • Online ISBN: 978-3-031-44201-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics