Analysis of Displacement Measured during the Compressive Testing of Cylindrical Specimens

Article Preview

Abstract:

This paper deals with selected aspects of the analysis of the displacement and deformation stiffness of cylindrical specimens during compressive tests. A developed correction model is presented, and two types of material were selected for the adjustment of the correction model: concrete from an existing structure, and alkali-activated aluminosilicate composite. The correction model was calibrated using the test response of a steel cylinder.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 336)

Pages:

135-144

Citation:

Online since:

August 2022

Export:

Price:

* - Corresponding Author

[1] ČSN EN 13791, Assessment of in-situ compressive strength in structures and precast concrete components. 2020. In Czech.

DOI: 10.3403/30201030

Google Scholar

[2] ASTM International 2012 ASTM C42 / C42M-12 Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete ASTM International West Conshohocken PA.

DOI: 10.1520/c0042_c0042m-12

Google Scholar

[3] D. Lisztwan, I. Kumpová, P. Daněk, P. Frantík, Z. Keršner, Mechanical fracture parameters of concrete drill-core specimens supported by a slenderness ratio study. In: Young Scientist 2021. IOP Conf. Ser.: Mater. Sci. Eng. IOP Publishing Ltd, England, 1209 (2021) 1–16.

DOI: 10.1088/1757-899x/1209/1/012042

Google Scholar

[4] P. Frantík, P. Rovnaníková, Z. Keršner, Strength of AAAS Composites with Ceramic Precursor over Time. In: 27th Concrete Days. Solid State Phenomena. Switzerland: Trans Tech Publications Ltd, Switzerland, 322 (2021) 60–65.

DOI: 10.4028/www.scientific.net/ssp.322.60

Google Scholar

[5] I. Rozsypalová, P. Daněk, P. Rovnaníková, Z. Keršner, Fracture Resistance of AAAS Composites with Ceramic Precursor. In: 27th Concrete Days. Solid State Phenomena. Switzerland: Trans Tech Publications Ltd, Switzerland, 322 (2021) 54–59.

DOI: 10.4028/www.scientific.net/ssp.322.54

Google Scholar

[6] M. Lipowczan, D. Lehký, I. Rozsypalová, P. Daněk, P. Rovnaníková, Z. Keršner, Identification of AAAS Composites Fracture Parameters. In: 27th Concrete Days. Solid State Phenomena. Switzerland: Trans Tech Publications Ltd, Switzerland, 322 (2021) 66–71.

DOI: 10.4028/www.scientific.net/ssp.322.66

Google Scholar

[7] European Committee for Standardization EN 12390-3 2020 Testing Hardened Concrete – Part 3: Compressive strength of test specimens.

Google Scholar

[8] L. De Chiffre, S. Carmignato, J.-P. Kruth, R. Schmitt, A. Weckenmann, Industrial applications of computed tomography. CIRP Annals 63 (2014) 655–677.

DOI: 10.1016/j.cirp.2014.05.011

Google Scholar

[9] B. K. Bay, T. S. Smith, D. P. Fyhrie, M. Saad, Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Experimental Mechanics 39 (1999), 217–226.

DOI: 10.1007/bf02323555

Google Scholar

[10] T. Fíla, D. Vavřík, D., EU Patent 2835631 (2016).

Google Scholar

[11] M. Vopálenský, ToraPar 1.0 – software for setting up the parameters of computed tomography [software], ITAM CAS (2018).

Google Scholar

[12] M. Doube, M. M. Kłosowski, I. Arganda-Carreras, F. P. Cordelières, R. P. Dougherty, J. S. Jackson, B. Schmid, J. R. Hutchinson, S. J. Shefelbine, BoneJ: Free and extensible bone image analysis in ImageJ, Bone. 47 (2010) 1076–1079.

DOI: 10.1016/j.bone.2010.08.023

Google Scholar