Skip to main content
Log in

High-Order Harmonics from Laser Irradiated Electron Density Singularity Formed at the Bow Wave in the Laser Plasma

  • Optical and Acoustical Waves in Plasma
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The electron density singularity formed at the joining area of relativistic wake wave and bow waves has been proposed as a novel relativistic electron mirror regime to reflect the counter-propagating electromagnetic pulse [1]. Coherent hard electromagnetic radiation is generated by the reflection, compression and frequency upshift from the electron density singularity. In this paper, detailed description of this regime is provided, and new features are shown. The electromagnetic fields reflected by the electron density singularity are investigated via multi-dimensional particle-in-cell simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mu, T.Z. Esirkepov, Y. Gu, T.M. Jeong, P. Valenta, A.S. Pirozhkov, J.K. Koga, M. Kando, G. Korn, and S.V. Bulanov, “Boosted High Order Harmonics from Electron Density Singularity Formed at the Relativistic Laser Bow Wave,” Preprint arXiv: 1904.05574 (2019).

  2. S. Suckewer and C.H. Skinner, “Soft X-Ray Lasers and Their Applications,” Science. 247, 1553 (1990).

    Article  ADS  Google Scholar 

  3. F. Krausz and M. Ivanov, “Attosecond Physics,” Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  4. H. Daido, “Review of Soft X-Ray Laser Researches and Developments,” Rep. Prog. Phys. 65, 1513 (2002).

    Article  ADS  Google Scholar 

  5. G.A. Mourou, T. Tajima, and S.V. Bulanov, “Optics in the Relativistic Regime,” Rev. Mod. Phys. 78, 309 (2006).

    Article  ADS  Google Scholar 

  6. U. Teubner and P. Gibbon, “High-Order Harmonics from Laser-Irradiated Plasma Surfaces,” Rev. Mod. Phys. 81, 445 (2009).

    Article  ADS  Google Scholar 

  7. S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, and A. Rousse, “Femtosecond X-Rays from Laser-Plasma Accelerators,” Rev. Mod. Phys. 85, 1 (2013).

    Article  ADS  Google Scholar 

  8. T.Zh. Esirkepov, S.V. Bulanov, M. Kando, A.S. Pirozhkov, and A.G. Zhidkov, “Boosted High-Harmonics Pulse from a Double-Sided Relativistic Mirror,” Phys. Rev. Lett. 103, 025002 (2009).

    Article  ADS  Google Scholar 

  9. T. Nakamura, J.K. Koga, T.Zh. Esirkepov, M. Kando, G. Korn, and S.V. Bulanov, “High-Power γ-Ray Flash Generation in Ultraintense Laser-Plasma Interactions,” Phys. Rev. Lett. 108, 195001 (2012).

    Article  ADS  Google Scholar 

  10. C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.P.L. Robinson, and A.R. Bell, “Dense Electron-Positron Plasmas and Ultraintense γ-Rays from Laser-Irradiated Solids,” Phys. Rev. Lett. 108, 165006 (2012).

    Article  ADS  Google Scholar 

  11. S.V. Bulanov, T.Zh. Esirkepov, M. Kando, J. Koga, K. Kondo, and G. Korn, “On the Problems of Relativistic Laboratory Astrophysics and Fundamental Physics with Super Powerful Lasers,” Plasma Phys. Rep. 41, 1 (2015).

    Article  ADS  Google Scholar 

  12. Z. Gong, R.H. Hu, Y.R. Shou, B. Qiao, C.E. Chen, X.T. He, S.S. Bulanov, T.Zh. Esirkepov, S.V. Bulanov, and X.Q. Yan, “High-Efficiency γ-Ray Flash Generation via Multiple-Laser Scattering in Ponderomotive Potential Well,” Phys. Rev. E. 95, 013210 (2017).

    Article  ADS  Google Scholar 

  13. R. Capdessus, M. King, D. Del Sorbo, M. Duff, C.P. Ridgers, and P. McKenna, “Relativistic Doppler-Boosted γ-Rays in High Fields,” Sci. Rep. 8, 9155 (2018).

    Article  ADS  Google Scholar 

  14. K.V. Lezhnin, P.V. Sasorov, G. Korn, and S.V. Bulanov, “High Power Gamma Flare Generation in Multi-Petawatt Laser Interaction with Tailored Targets,” Phys. Plasmas. 25, 123105 (2018).

    Article  Google Scholar 

  15. S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Experimental Observation of Relativistic Nonlinear Thomson Scattering,” Nature. 396, 653 (1998).

    Article  ADS  Google Scholar 

  16. G. Sarri, D.J. Corvan, W. Schumaker, J.M. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C.H. Keitel, K. Krushelnick, S.P.D. Mangles, Z. Najmudin, D. Symes, A.G.R. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh Brilliance Multi-MeV γ-Ray Beams from Nonlinear Relativistic Thomson Scattering,” Phys. Rev. Lett. 113, 224801 (2014).

    Article  ADS  Google Scholar 

  17. W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Zhao, J. Zhang, C. Liu, M. Chen, S. Chen, S. Banerjee, and D. Umstadter, “High-Order Multiphoton Thomson Scattering,” Nat. Photon. 11, 514520 (2017).

    Article  Google Scholar 

  18. S.V. Bulanov, T. Esirkepov, and T. Tajima, “Light Intensification Towards the Schwinger Limit,” Phys. Rev. Lett. 91, 085001 (2003).

    Article  ADS  Google Scholar 

  19. A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Phys. 17, 891 (1905).

    Article  MATH  Google Scholar 

  20. V.V. Kulagin, V.A. Cherepenin, M.S. Hur, and H. Suk, “Flying Mirror Model for Interaction of a Super-Intense Nonadiabatic Laser Pulse with a Thin Plasma Layer: Dynamics of Electrons in a Linearly Polarized External Field,” Phys. Plasmas. 14, 113101 (2007).

    Article  ADS  Google Scholar 

  21. S.V. Bulanov, N.M. Naumova, and F. Pegoraro, “Interaction of an Ultrashort, Relativistically Strong Laser Pulse with an Overdense Plasma,” Phys. Plasmas. 1, 745 (1994).

    Article  ADS  Google Scholar 

  22. N.M. Naumova, J.A. Nees, I.V. Sokolov, B. Hou, and G.A. Mourou, “Relativistic Generation of Isolated Attosecond Pulses in a λ3 Focal Volume,” Phys. Rev. Lett. 92, 063902 (2004).

    Article  ADS  Google Scholar 

  23. S.V. Bulanov, T.Zh. Esirkepov, M. Kando, A.S. Pirozhkov, and N.N. Rosanov, “Relativistic Mirrors in Plasmas. Novel Results and Perspectives,” Phys. Usp. 56, 429 (2013).

    Article  ADS  Google Scholar 

  24. M. Kando, T.Zh. Esirkepov, J.K. Koga, A.S. Pirozhkov, and S.V. Bulanov, “Coherent, Short-Pulse X-Ray Generation via Relativistic Flying Mirrors,” Quantum Beam Sci. 2, 9 (2018).

    Article  ADS  Google Scholar 

  25. S.S. Bulanov, A. Maksimchuk, C.B. Schroeder, A.G. Zhidkov, E. Esarey, and W.P. Leemans, “Relativistic Spherical Plasma Waves,” Phys. Plasmas. 19, 020702 (2012).

    Article  ADS  Google Scholar 

  26. J.K. Koga, S.V. Bulanov, T.Zh. Esirkepov, A.S. Pirozhkov, M. Kando, and N.N. Rosanov, “Possibility of Measuring Photon-Photon Scattering via Relativistic Mirrors,” Phys. Rev. A. 86, 053823 (2012).

    Article  ADS  Google Scholar 

  27. M. Lobet, M. Kando, J.K. Koga, T.Zh. Esirkepov, T. Nakamura, A.S. Pirozhkov, and S.V. Bulanov, “Controlling the Generation of High Frequency Electromagnetic Pulses with Relativistic Flying Mirrors Using an Inhomogeneous Plasma,” Phys. Lett. A. 377, 1114 (2013).

    Article  ADS  Google Scholar 

  28. P. Chen and G.A. Mourou, “Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox,” Phys. Rev. Lett. 118, 045001 (2017).

    Article  ADS  Google Scholar 

  29. Z.M. Sheng, K. Mima, J. Zhang, and H. Sanuki, “Emission of Electromagnetic Pulses from Laser Wakefields Through Linear Mode Conversion,” Phys. Rev. Lett. 94, 095003 (2005).

    Article  ADS  Google Scholar 

  30. J. Mu, F.Y. Li, M. Zeng, M. Chen, Z.M. Sheng, and J. Zhang, “Robust Relativistic Electron Mirrors in Laser Wakefields for Enhanced Thomson Backscattering,” Appl. Phys. Lett. 103, 261114 (2013).

    Article  ADS  Google Scholar 

  31. S.V. Bulanov, T.Zh. Esirkepov, M. Kando, J. Koga, A.S. Pirozhkov, T. Nakamura, S.S. Bulanov, C.B. Schroeder, E. Esarey, F. Califano, and F. Pegoraro, “On the Breaking of a Plasma Wave in a Thermal Plasma. I. The Structure of the Density Singularity,” Phys. Plasmas. 19, 113102 (2012).

    Article  ADS  Google Scholar 

  32. S.V. Bulanov, T.Zh. Esirkepov, M. Kando, J. Koga, A.S. Pirozhkov, T. Nakamura, S.S. Bulanov, C.B. Schroeder, E. Esarey, F. Califano, and F. Pegoraro, “On the Breaking of a Plasma Wave in a Thermal Plasma. II. Electromagnetic Wave Interaction with the Breaking Plasma Wave,” Phys. Plasmas. 19, 113103 (2012).

    Article  ADS  Google Scholar 

  33. A. Grassi, L. Fedeli, A. Macchi, S.V. Bulanov, and F. Pegoraro, “Phase Space Dynamics after the Breaking of a Relativistic Langmuir Wave in a Thermal Plasma,” Eur. Phys. J. D. 68, 178 (2014).

    Article  ADS  Google Scholar 

  34. S.S. Bulanov, T.Zh. Esirkepov, F.F. Kamenets, and F. Pegoraro, “Single-Cycle High-Intensity Electromagnetic Pulse Generation in the Interaction of a Plasma Wakefield with Regular Nonlinear Structures,” Phys. Rev. E. 73, 036408 (2006).

    Article  ADS  Google Scholar 

  35. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential for Biomolecular Imaging with Femtosecond X-Ray Pulses,” Nature. 406, 752 (2000).

    Article  ADS  Google Scholar 

  36. S.V. Bulanov, T.Zh. Esirkepov, D. Habs, F. Pegoraro and T. Tajima, “Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics,” Eur. Phys. J. D. 55, 483 (2009).

    Article  ADS  Google Scholar 

  37. V.S. Popov, “Tunnel and Multiphoton Ionization of Atoms and Ions in a Strong Laser Field (Keldysh Theory),” Phys. Usp. 47, 855 (2004).

    Article  ADS  Google Scholar 

  38. H. Kadlecova, G. Korn, and S.V. Bulanov, “Electromagnetic Shocks in the Quantum Vacuum,” Phys. Rev. D. 99, 036002 (2019).

    Article  ADS  Google Scholar 

  39. A.V. Panchenko, T.Zh. Esirkepov, A.S. Pirozhkov, M. Kando, F.F. Kamenets, and S.V. Bulanov, “Interaction of Electromagnetic Waves with Caustics in Plasma Flows,” Phys. Rev. E. 78, 056402 (2008) [DOI: https://doi.org/10.1103/PhysRevE.78.056402].

    Article  ADS  Google Scholar 

  40. E. Esarey, C.B. Schroeder, and W.P. Leemans, “Physics of Laser-Driven Plasma-Based Electron Accelerators,” Rev. Mod. Phys. 81, 1229 (2009) [DOI: https://doi.org/10.1103/RevModPhys.81.1229].

    Article  ADS  Google Scholar 

  41. A. Pukhov and J. Meyer-Ter-Vehn, “Laser Wake Field Acceleration: The Highly Non-Linear Broken-Wave Regime,” Appl. Phys. B. 74, 355 (2002) [DOI: https://doi.org/10.1007/s003400200795].

    Article  ADS  Google Scholar 

  42. T. Tajima and J.M. Dawson, “Laser Electron Accelerator,” Phys. Rev. Lett. 43(4), 267 (1979) [DOI: https://doi.org/10.1103/PhysRevLett.43.267].

    Article  ADS  Google Scholar 

  43. S.V. Bulanov, F. Pegoraro, A.M. Pukhov, and A.S. Sakharov, “Transverse-Wake Wave Breaking,” Phys. Rev. Lett. 78(22), 4205 (1997) [DOI: https://doi.org/10.1103/PhysRevLett.78.4205].

    Article  ADS  Google Scholar 

  44. T.Zh. Esirkepov, Y. Kato, and S.V. Bulanov, “Bow Wave from Ultraintense Electromagnetic Pulses in Plasmas,” Phys. Rev. Lett. 101, 265001 (2008) [DOI: https://doi.org/10.1103/PhysRevLett.101.265001].

    Article  ADS  Google Scholar 

  45. A.S. Pirozhkov, M. Kando, T.Zh. Esirkepov, P. Gallegos, H. Ahmed, E.N. Ragozin, A.Y. Faenov, T.A. Pikuz, T. Kawachi, A. Sagisaka, J.K. Koga, M. Coury, J. Green, P. Foster, C. Brenner, B. Dromey, D.R. Symes, M. Mori, K. Kawase, T. Kameshima, Y. Fukuda, L. Chen, I. Daito, K. Ogura, Y. Hayashi, H. Kotaki, H. Kiriyama, H. Okada, N. Nishimori, T. Imazono, K. Kondo, T. Kimura, T. Tajima, H. Daido, P. Rajeev, P. McKenna, M. Borghesi, D. Neely, Y. Kato, and S.V. Bulanov, “Soft-X-Ray Harmonic Comb from Relativistic Electron Spikes,” Phys. Rev. Lett. 108(13), 135004 (2012) [DOI: https://doi.org/10.1103/PhysRevLett.108.135004].

    Article  ADS  Google Scholar 

  46. A.S. Pirozhkov, T.Zh. Esirkepov, T.A. Pikuz, A.Ya. Faenov, K. Ogura, Y. Hayashi, H. Kotaki, E.N. Ragozin, D. Neely, H. Kiriyama, J.K. Koga, Y. Fukuda, A. Sagisaka, M. Nishikino, T. Imazono, N. Hasegawa, T. Kawachi, P.R. Bolton, H. Daido, Y. Kato, K. Kondo, S.V. Bulanov, and M. Kando, “Burst Intensification by Singularity Emitting Radiation in Multi-Stream Flows,” Sci. Rep. 7, 17968 (2017).

    Article  ADS  Google Scholar 

  47. J.K. Koga, S.V. Bulanov, T.Zh. Esirkepov, M. Kando, S.S. Bulanov, and A.S. Pirozhkov, “Relativisitcally Upshifted Higher Harmonic Generation via Relativistic Flying Mirrors,” Plasma Phys. Contr. Fus. 60, 074007 (2018).

    Article  ADS  Google Scholar 

  48. T.Zh. Esirkepov, J. Mu, Y. Gu, T.M. Jeong, P. Valenta, O. Klimo, J.K. Koga, M. Kando, G. Korn, S.V. Bulanov, and A.S. Pirozhkov, “Feasibility of Optical Probing of Relativistic Plasma Singularities,” Preprint arXiv:1903.02869 (2019).

  49. T. Poston and I. Stewart, Catastrophe Theory and Its Applications (Dover, N.Y., 1996).

    MATH  Google Scholar 

  50. T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N.J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, and C.P. Ridgers, “Contemporary Particle-in-Cell Approach to Laser-Plasma Modelling,” Plasma Phys. Contr. Fus. 57, 113001 (2015).

    Article  ADS  Google Scholar 

  51. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1971).

    MATH  Google Scholar 

  52. M. Kando, Y. Fukuda, A.S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T.Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J.K. Koga, H. Daido, S.V. Bulanov, T. Kimura, Y. Kato, and T. Tajima, “Demonstration of Laser-Frequency Upshift by Electron-Density Modulations in a Plasma Wakefield,” Phys. Rev. Lett. 99, 135001 (2007) [DOI https://doi.org/10.1103/PhysRevLett.99.135001].

    Article  ADS  Google Scholar 

Download references

Funding

The work is supported by the project High Field Initiative (CZ.02.1.01/0.0/0.0/15_003/0000449) from the European Regional Development Fund, and the project “IT4Innovations National Supercomputing Center LM2015070” from The Ministry of Education, Youth and Sports in Czech Republic. JKK acknowledges support from JSPS KAKENHI Grant Number JP16K05639.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Mu, T. Zh. Esirkepov, P. Valenta, T. M. Jeong, Ya. Gu, J. K. Koga, A. S. Pirozhkov, M. Kando, G. Korn or S. V. Bulanov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, J., Esirkepov, T.Z., Valenta, P. et al. High-Order Harmonics from Laser Irradiated Electron Density Singularity Formed at the Bow Wave in the Laser Plasma. Phys. Wave Phen. 27, 247–256 (2019). https://doi.org/10.3103/S1541308X19040010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X19040010

Navigation