Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis of 4-styrylpyrazoles and Evaluation of their Inhibitory Effects on Cyclin-dependent Kinases

Author(s): Daniel Toman, Radek Jorda, Haresh Ajani, Vladimír Kryštof* and Petr Cankař*

Volume 18, Issue 4, 2022

Published on: 06 August, 2021

Page: [484 - 496] Pages: 13

DOI: 10.2174/1573406417666210806095710

Price: $65

Abstract

Background: Cycle-regulating and transcriptional cyclin-dependent kinases (CDKs) are attractive targets in cancer drug development. Several CDK inhibitors have already been obtained or are close to regulatory approval for clinical applications.

Objective: Phenylazopyrazole CAN508 has been described as the first selective CDK9 inhibitor with an IC50 of 350 nM. Since the azo-moiety is not a suitable functionality for drugs due to pharmacological reasons, the preparation of carbo-analogues of CAN508 with similar biological activities is desirable. The present work is focused on the synthesis of carbo-analogues similar to CAN508 and their CDK inhibition activity.

Methods: Herein, the synthesis of 21 novel carbo analogues of CAN508 and their intermediates is reported. Subsequently, target compounds 8a - 8u were evaluated for protein kinase inhibition (CDK2/cyclin E, CDK4/cyclin D, CDK9/cyclin T) and antiproliferative activities in cell lines (K562, MCF-7, MV4-11). Moreover, the binding mode of derivative 8s in the active site of CDK9 was modelled.

Results: Compounds 8a - 8u were obtained from key intermediate 7, which was prepared by linear synthesis involving Vilsmeier-Haack, Knoevenagel, Hunsdiecker, and Suzuki-Miyaura reactions. Styrylpyrazoles 8t and 8u were the most potent CDK9 inhibitors with IC50 values of approximately 1 μM. Molecular modelling suggested binding in the active site of CDK9. The flow cytometric analysis of MV4-11 cells treated with the most active styrylpyrazoles showed a significant G1-arrest.

Conclusion: The prepared styrylpyrazoles showed inhibition activity towards CDKs and can provide a novel chemotype of kinase inhibitors.

Keywords: CDK inhibitors, styrylpyrazoles, Suzuki-Miyaura cross-coupling reaction, Vilsmeier-Haack reaction, CAN508, K562.

Graphical Abstract
[1]
Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development, 2013, 140(15), 3079-3093.
[http://dx.doi.org/10.1242/dev.091744] [PMID: 23861057]
[2]
Knudsen, E.S.; Witkiewicz, A.K. The Strange Case of CDK4/6 Inhibitors: Mechanisms, Resistance, and Combination Strategies. Trends Cancer, 2017, 3(1), 39-55.
[http://dx.doi.org/10.1016/j.trecan.2016.11.006] [PMID: 28303264]
[3]
Ferguson, F.M.; Gray, N.S. Kinase inhibitors: The road ahead. Nat. Rev. Drug Discov., 2018, 17(5), 353-377.
[http://dx.doi.org/10.1038/nrd.2018.21] [PMID: 29545548]
[4]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[5]
Bradner, J.E.; Hnisz, D.; Young, R.A. Transcriptional Addiction in Cancer. Cell, 2017, 168(4), 629-643.
[http://dx.doi.org/10.1016/j.cell.2016.12.013] [PMID: 28187285]
[6]
Greenleaf, A.L. Human CDK12 and CDK13, multi-tasking CTD kinases for the new millenium. Transcription, 2019, 10(2), 91-110.
[http://dx.doi.org/10.1080/21541264.2018.1535211] [PMID: 30319007]
[7]
Menzl, I.; Witalisz-Siepracka, A.; Sexl, V. CDK8-Novel Therapeutic Opportunities. Pharmaceuticals (Basel), 2019, 12(2), 92.
[http://dx.doi.org/10.3390/ph12020092] [PMID: 31248103]
[8]
Boffo, S.; Damato, A.; Alfano, L.; Giordano, A. CDK9 inhibitors in acute myeloid leukemia. J. Exp. Clin. Cancer Res., 2018, 37(1), 36-46.
[http://dx.doi.org/10.1186/s13046-018-0704-8] [PMID: 29471852]
[9]
Roninson, I.B.; Győrffy, B.; Mack, Z.T.; Shtil, A.A.; Shtutman, M.S.; Chen, M.; Broude, E.V. Identifying Cancers Impacted by CDK8/19. Cells, 2019, 8(8), 821.
[http://dx.doi.org/10.3390/cells8080821] [PMID: 31382571]
[10]
He, Y.; Long, W.; Liu, Q. Targeting Super-Enhancers as a Therapeutic Strategy for Cancer Treatment. Front. Pharmacol., 2019, 10, 361.
[http://dx.doi.org/10.3389/fphar.2019.00361] [PMID: 31105558]
[11]
Krystof, V.; Cankar, P.; Frysová, I.; Slouka, J.; Kontopidis, G.; Dzubák, P.; Hajdúch, M.; Srovnal, J.; de Azevedo, W.F., Jr; Orság, M.; Paprskárová, M.; Rolcík, J.; Látr, A.; Fischer, P.M.; Strnad, M. 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J. Med. Chem., 2006, 49(22), 6500-6509.
[http://dx.doi.org/10.1021/jm0605740] [PMID: 17064068]
[12]
Baumli, S.; Hole, A.J.; Noble, M.E.M.; Endicott, J.A. The CDK9 C-helix exhibits conformational plasticity that may explain the selectivity of CAN508. ACS Chem. Biol., 2012, 7(5), 811-816.
[http://dx.doi.org/10.1021/cb2004516] [PMID: 22292676]
[13]
Kwiatkowski, N.; Zhang, T.; Rahl, P.B.; Abraham, B.J.; Reddy, J.; Ficarro, S.B.; Dastur, A.; Amzallag, A.; Ramaswamy, S.; Tesar, B.; Jenkins, C.E.; Hannett, N.M.; McMillin, D.; Sanda, T.; Sim, T.; Kim, N.D.; Look, T.; Mitsiades, C.S.; Weng, A.P.; Brown, J.R.; Benes, C.H.; Marto, J.A.; Young, R.A.; Gray, N.S. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature, 2014, 511(7511), 616-620.
[http://dx.doi.org/10.1038/nature13393] [PMID: 25043025]
[14]
Hu, S.; Marineau, J.J.; Rajagopal, N.; Hamman, K.B.; Choi, Y.J.; Schmidt, D.R.; Ke, N.; Johannessen, L.; Bradley, M.J.; Orlando, D.A.; Alnemy, S.R.; Ren, Y.; Ciblat, S.; Winter, D.K.; Kabro, A.; Sprott, K.T.; Hodgson, J.G.; Fritz, C.C.; Carulli, J.P.; di Tomaso, E.; Olson, E.R. Discovery and Characterization of SY-1365, a Selective, Covalent Inhibitor of CDK7. Cancer Res., 2019, 79(13), 3479-3491.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0119] [PMID: 31064851]
[15]
Zhang, T.; Kwiatkowski, N.; Olson, C.M.; Dixon-Clarke, S.E.; Abraham, B.J.; Greifenberg, A.K.; Ficarro, S.B.; Elkins, J.M.; Liang, Y.; Hannett, N.M.; Manz, T.; Hao, M.; Bartkowiak, B.; Greenleaf, A.L.; Marto, J.A.; Geyer, M.; Bullock, A.N.; Young, R.A.; Gray, N.S. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat. Chem. Biol., 2016, 12(10), 876-884.
[http://dx.doi.org/10.1038/nchembio.2166] [PMID: 27571479]
[16]
Barlaam, B.; Savi, C. De; Drew, L.; Ferguson, A.D.; Ferguson, D.; Gu, C.; Hawkins, J.; Hird, A.W.; Lamb, M.L.; O’Connell, N.; Pike, K.; Proia, T.; Martin, M.S.; Vasbinder, M.M.; Varnes, J.; Wang, J.; Shao, W Abstract 1650: discovery of AZD4573, a potent and selective inhibitor of CDK9 that enables transient target engagement for the treatment of hematologic malignancies. Cancer Res., 2018, 78, 1650-1650.
[17]
Lücking, U.; Scholz, A.; Lienau, P.; Siemeister, G.; Kosemund, D.; Bohlmann, R.; Briem, H.; Terebesi, I.; Meyer, K.; Prelle, K.; Denner, K.; Bömer, U.; Schäfer, M.; Eis, K.; Valencia, R.; Ince, S.; von Nussbaum, F.; Mumberg, D.; Ziegelbauer, K.; Klebl, B.; Choidas, A.; Nussbaumer, P.; Baumann, M.; Schultz-Fademrecht, C.; Rühter, G.; Eickhoff, J.; Brands, M. Identification of Atuveciclib (BAY 1143572), the First Highly Selective, Clinical PTEFb/CDK9 Inhibitor for the Treatment of Cancer. ChemMedChem, 2017, 12(21), 1776-1793.
[http://dx.doi.org/10.1002/cmdc.201700447] [PMID: 28961375]
[18]
Wyatt, P.G.; Woodhead, A.J.; Berdini, V.; Boulstridge, J.A.; Carr, M.G.; Cross, D.M.; Davis, D.J.; Devine, L.A.; Early, T.R.; Feltell, R.E.; Lewis, E.J.; McMenamin, R.L.; Navarro, E.F.; O’Brien, M.A.; O’Reilly, M.; Reule, M.; Saxty, G.; Seavers, L.C.A.; Smith, D-M.; Squires, M.S.; Trewartha, G.; Walker, M.T.; Woolford, A.J-A. Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J. Med. Chem., 2008, 51(16), 4986-4999.
[http://dx.doi.org/10.1021/jm800382h] [PMID: 18656911]
[19]
Pevarello, P.; Brasca, M.G.; Orsini, P.; Traquandi, G.; Longo, A.; Nesi, M.; Orzi, F.; Piutti, C.; Sansonna, P.; Varasi, M.; Cameron, A.; Vulpetti, A.; Roletto, F.; Alzani, R.; Ciomei, M.; Albanese, C.; Pastori, W.; Marsiglio, A.; Pesenti, E.; Fiorentini, F.; Bischoff, J.R.; Mercurio, C. 3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 2. Lead optimization. J. Med. Chem., 2005, 48(8), 2944-2956.
[http://dx.doi.org/10.1021/jm0408870] [PMID: 15828833]
[20]
Jessen, B.A.; Lee, L.; Koudriakova, T.; Haines, M.; Lundgren, K.; Price, S.; Nonomiya, J.; Lewis, C.; Stevens, G.J. Peripheral white blood cell toxicity induced by broad spectrum cyclin-dependent kinase inhibitors. J. Appl. Toxicol., 2007, 27(2), 133-142.
[http://dx.doi.org/10.1002/jat.1177] [PMID: 17211896]
[21]
Brasca, M.G.; Amboldi, N.; Ballinari, D.; Cameron, A.; Casale, E.; Cervi, G.; Colombo, M.; Colotta, F.; Croci, V.; D’Alessio, R.; Fiorentini, F.; Isacchi, A.; Mercurio, C.; Moretti, W.; Panzeri, A.; Pastori, W.; Pevarello, P.; Quartieri, F.; Roletto, F.; Traquandi, G.; Vianello, P.; Vulpetti, A.; Ciomei, M. Identification of N,1,4,4-Tetramethyl-8-{[4-(4-Methylpiperazin-1-Yl)Phenyl]Amino}-4,5-Dihydro-1H-Pyrazolo[4,3-h]Quinazoline-3-Carboxamide (PHA-848125), a Potent, Orally Available Cyclin Dependent Kinase Inhibitor. J. Med. Chem., 2009, 52, 5152-5163.
[http://dx.doi.org/10.1021/jm9006559] [PMID: 19603809]
[22]
Heathcote, D.A.; Patel, H.; Kroll, S.H.B.; Hazel, P.; Periyasamy, M.; Alikian, M.; Kanneganti, S.K.; Jogalekar, A.S.; Scheiper, B.; Barbazanges, M.; Blum, A.; Brackow, J.; Siwicka, A.; Pace, R.D.M.; Fuchter, M.J.; Snyder, J.P.; Liotta, D.C.; Freemont, P.S.; Aboagye, E.O.; Coombes, R.C.; Barrett, A.G.M.; Ali, S. A novel pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration. J. Med. Chem., 2010, 53(24), 8508-8522.
[http://dx.doi.org/10.1021/jm100732t] [PMID: 21080703]
[23]
Guzi, T.J.; Paruch, K. Preparation of Pyrazolotriazines as Kinase Inhibitors for Treating Cancer and Other Diseases Associated with a Kinase. US 20050187219 A1, 2005.
[24]
Jorda, R.; Navrátilová, J.; Hušková, Z.; Schütznerová, E.; Cankař, P.; Strnad, M.; Kryštof, V. Arylazopyrazole AAP1742 inhibits CDKs and induces apoptosis in multiple myeloma cells via Mcl-1 downregulation. Chem. Biol. Drug Des., 2014, 84(4), 402-408.
[http://dx.doi.org/10.1111/cbdd.12330] [PMID: 24803299]
[25]
Jorda, R.; Schütznerová, E.; Cankař, P.; Brychtová, V.; Navrátilová, J.; Kryštof, V. Novel arylazopyrazole inhibitors of cyclin-dependent kinases. Bioorg. Med. Chem., 2015, 23(9), 1975-1981.
[http://dx.doi.org/10.1016/j.bmc.2015.03.025] [PMID: 25835357]
[26]
Engel, E.; Ulrich, H.; Vasold, R.; König, B.; Landthaler, M.; Süttinger, R.; Bäumler, W. Azo pigments and a basal cell carcinoma at the thumb. Dermatology, 2008, 216(1), 76-80.
[http://dx.doi.org/10.1159/000109363] [PMID: 18032904]
[27]
Jedinak, L.; Krystof, V.; Cankar, P. The synthesis of some derivatives based on the 4-benzyl-1H-pyrazole-3,5-diamine core. Heterocycles, 2011, 83, 371-383.
[http://dx.doi.org/10.3987/COM-10-12101]
[28]
Tomanová, M.; Jedinák, L.; Košař, J.; Kvapil, L.; Hradil, P.; Cankař, P. Synthesis of 4-substituted pyrazole-3,5-diamines via Suzuki-Miyaura coupling and iron-catalyzed reduction. Org. Biomol. Chem., 2017, 15(48), 10200-10211.
[http://dx.doi.org/10.1039/C7OB02373A] [PMID: 29177274]
[29]
Chen, Z.; Zhang, Y.; Nie, J.; Ma, J-A. Transition-Metal-Free [3 + 2] Cycloaddition of Nitroolefins and Diazoacetonitrile: A Facile Access to Multisubstituted Cyanopyrazoles. Org. Lett., 2018, 20(7), 2120-2124.
[http://dx.doi.org/10.1021/acs.orglett.8b00729] [PMID: 29578724]
[30]
Kim, H.T.; Ha, H.; Kang, G.; Kim, O.S.; Ryu, H.; Biswas, A.K.; Lim, S.M.; Baik, M-H.; Joo, J.M. Ligand-controlled Regiodivergent C-H Alkenylation of Pyrazoles and its Application to the Synthesis of Indazoles. Angew. Chem. Int. Ed. Engl., 2017, 56(51), 16262-16266.
[http://dx.doi.org/10.1002/anie.201709162] [PMID: 29105973]
[31]
Chen, Z.; Zheng, Y.; Ma, J-A. Use of a Traceless Activating and Directing Group for the Construction of Trifluoromethylpyrazoles: One-Pot Transformation of Nitroolefins and Trifluorodiazoethane. Angew. Chem. Int. Ed. Engl., 2017, 56(16), 4569-4574.
[http://dx.doi.org/10.1002/anie.201700955] [PMID: 28328171]
[32]
Tenora, L.; Galeta, J.; Řezníčková, E.; Kryštof, V.; Potáček, M. Application of Pd-Catalyzed Cross-Coupling Reactions in the Synthesis of 5,5-Dimethyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazoles that Inhibit ALK5 Kinase. J. Org. Chem., 2016, 81(23), 11841-11856.
[http://dx.doi.org/10.1021/acs.joc.6b02230] [PMID: 27934472]
[33]
Kim, S.H.; Lim, J.W.; Yu, J.; Kim, J.N. Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles from α-Alkenyl-α,β-Enones Derived from Morita-Baylis-Hillman Adducts. Bull. Korean Chem. Soc., 2013, 34, 2915-2920.
[http://dx.doi.org/10.5012/bkcs.2013.34.10.2915]
[34]
Zaitsev, A.A.; Vatsadze, I.A.; Dalinger, I.L.; Kachala, V.V.; Nelyubina, Y.V.; Shevelev, S.A. Nitropyrazoles 15. Synthesis and Some Transformations of 1-(2,4-Dinitrophenyl)-4-Methyl-3,5-Dinitropyrazole. Russ. Chem. Bull., 2009, 58, 2109-2117.
[http://dx.doi.org/10.1007/s11172-009-0288-8]
[35]
Silva, V.L.M.; Silva, A.M.S.; Pinto, D.C.G.A.; Cavaleiro, J.A.S.; Elguero, J. Synthesis of (E)- and (Z)-3(5)-(2-Hydroxyphenyl)-4-Styrylpyrazoles. Monatsh. Chem., 2009, 140, 87-95.
[http://dx.doi.org/10.1007/s00706-008-0002-9]
[36]
Miller, R.D.; Reiser, O. The Synthesis of Electron Donor-Acceptor Substituted Pyrazoles. J. Heterocycl. Chem., 1993, 30, 755-763.
[http://dx.doi.org/10.1002/jhet.5570300326]
[37]
Jorda, R.; Hendrychová, D.; Voller, J.; Řezníčková, E.; Gucký, T.; Kryštof, V. How selective are pharmacological inhibitors of cell-cycle-regulating cyclin-dependent kinases? J. Med. Chem., 2018, 61(20), 9105-9120.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00049] [PMID: 30234987]
[38]
Ajani, H.; Jansa, J.; Köprülüoğlu, C.; Hobza, P.; Kryštof, V.; Lyčka, A.; Lepsik, M. Imidazo[1,2-c]pyrimidin-5(6H)-one as a novel core of cyclin-dependent kinase 2 inhibitors: Synthesis, activity measurement, docking, and quantum mechanical scoring. J. Mol. Recognit., 2018, 31(9), e2720.
[http://dx.doi.org/10.1002/jmr.2720] [PMID: 29687635]
[39]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[40]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[41]
Brady, O.L. Use of 2,4-Dinitrophenylhydrazine as a Reagent for Carbonyl Compounds. J. Chem. Soc., 1931, 756-759.
[http://dx.doi.org/10.1039/JR9310000756]
[42]
Sridhar, R.; Perumal, P.T. A New Protocol to Synthesize 1,4-Dihydropyridines by Using 3,4,5-Trifluorobenzeneboronic Acid as a Catalyst in Ionic Liquid: Synthesis of Novel 4-(3-Carboxyl-1H-Pyrazol-4-Yl)-1,4-Dihydropyridines. Tetrahedron, 2005, 61, 2465-2470.
[http://dx.doi.org/10.1016/j.tet.2005.01.008]
[43]
Said, M.A.; Eldehna, W.M.; Nocentini, A.; Fahim, S.H.; Bonardi, A.; Elgazar, A.A.; Kryštof, V.; Soliman, D.H.; Abdel-Aziz, H.A.; Gratteri, P.; Abou-Seri, S.M.; Supuran, C.T. Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation. Eur. J. Med. Chem., 2020, 189, 112019.
[http://dx.doi.org/10.1016/j.ejmech.2019.112019] [PMID: 31972394]
[44]
Jing, L.; Tang, Y.; Xiao, Z. Discovery of novel CDK inhibitors via scaffold hopping from CAN508. Bioorg. Med. Chem. Lett., 2018, 28(8), 1386-1391.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.054] [PMID: 29550093]
[45]
Schütznerová, E.; Popa, I.; Kryštof, V.; Koshino, H.; Trávníček, Z.; Hradil, P.; Cankař, P. Utilization of DmbNHNH2 in the Synthesis of Amino-Substituted 4-((3,5-Diamino-1H-Pyrazol-4-Yl)Diazenyl) Phenols. Tetrahedron, 2012, 68, 3996-4002.
[http://dx.doi.org/10.1016/j.tet.2012.03.063]
[46]
Barr, P.J.; Jones, A.S.; Verhelst, G.; Walker, R.T. Synthesis of some 5-halovinyl derivatives of uracil and their conversion into 2’- deoxyribonucleosides. J. Chem. Soc. Perkin Trans. 1 Org. Bio- Organic Chem., 1981, 1665-1670.
[47]
Eger, K.; Mohammad, J.; Schmidt, M. Steric fixation bromovinyluracil: synthesis of furo[2,3-d]pyrimidine nucleosides. J. Heterocycl. Chem., 1995, 31, 211-218.
[http://dx.doi.org/10.1002/jhet.5570320135]
[48]
Cox, P.A.; Reid, M.; Leach, A.G.; Campbell, A.D.; King, E.J.; Lloyd-Jones, G.C. Base-catalyzed aryl-B(OH)2 protodeboronation revisited: from concerted proton transfer to liberation of a transient aryl anion. J. Am. Chem. Soc., 2017, 139(37), 13156-13165.
[http://dx.doi.org/10.1021/jacs.7b07444] [PMID: 28823150]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy