Skip to main content

Advertisement

Log in

Characterization of the Morphological Nature of Hollow Spray Dried Dispersion Particles Using X-ray Submicron-Computed Tomography

  • Brief/Technical Note
  • Theme: Advancements in Amorphous Solid Dispersions to Improve Bioavailability
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Tobyn M, Brown J, Dennis AB, Fakes M, Gao Q, Gamble J, et al. Amorphous drug-PVP dispersions: application of theoretical, thermal and spectroscopic analytical techniques to the study of a molecule with intermolecular bonds in both the crystalline and pure amorphous state. J Pharm Sci. 2009;98(9):3456–68.

    Article  CAS  Google Scholar 

  2. Paudel A, Worku ZA, Meeus J, Guns S, Van Den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453(1):253–84.

    Article  CAS  Google Scholar 

  3. Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-impact of different polymers. J Pharm Sci. 2013;102(1):171–84.

    Article  CAS  Google Scholar 

  4. Al-Khattawi A, Bayly A, Phillips A, Wilson D. The design and scale-up of spray dried particle delivery systems. Expert Opin Drug Deliv. 2018;15(1):47–63.

    Article  CAS  Google Scholar 

  5. Elversson J, Millqvist-Fureby A, Alderborn G, Elofsson U. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. J Pharm Sci. 2003;92(4):900–10.

    Article  CAS  Google Scholar 

  6. Gamble JF, Terada M, Holzner C, Lavery L, Nicholson SJ, Timmins P, Tobyn M. Application of X-ray microtomography for the characterisation of hollow polymer-stabilised spray dried amorphous dispersion particles. Int J Pharm. 2016;510(1):1–8.

    Article  CAS  Google Scholar 

  7. Gamble JF, Ferreira AP, Tobyn M, DiMemmo L, Martin K, Mathias N, Schild R, Vig B, Baumann JM, Parks S, Ashton M. Application of imaging based tools for the characterisation of hollow spray dried amorphous dispersion particles. Int J Pharm. 2014;465(1-2):210–7.

    Article  CAS  Google Scholar 

  8. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38(7):728–46.

    Article  CAS  Google Scholar 

  9. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  CAS  Google Scholar 

  10. Maher PG, Auty MAE, Roos YH, Zychowski LM, Fenelon MA. Microstructure and lactose crystallization properties in spray dried nanoemulsions. Food Struct. 2015;3(0):1–11.

    Article  Google Scholar 

  11. Zhang S, Stroud PA, Zhu A, Johnson MJ, Lomeo J, Burcham CL, Hinds J, Allen-Francis Blakely K, Walworth MJ. Characterizing the impact of spray dried particle morphology on tablet dissolution using quantitative X-ray microscopy. Eur J Pharm Sci. 2021;165:105921.

    Article  CAS  Google Scholar 

  12. Elversson J, Millqvist-Fureby A. Particle size and density in spray drying—effects of carbohydrate properties. J Pharm Sci. 2005;94(9):2049–60.

    Article  CAS  Google Scholar 

  13. Hsieh DS, Yue H, Nicholson SJ, Roberts D, Schild R, Gamble JF, Lindrud M. The secondary drying and the fate of organic solvents for spray dried dispersion drug product. Pharm Res. 2015;32(5):1804–16.

    Article  CAS  Google Scholar 

  14. Vicente J, Pinto J, Menezes J, Gaspar F. Fundamental analysis of particle formation in spray drying. Powder Technol. 2013;247:1–7.

    Article  CAS  Google Scholar 

  15. Bosquillon C, Rouxhet PG, Ahimou F, Simon D, Culot C, Préat V, Vanbever R. Aerosolization properties, surface composition and physical state of spray-dried protein powders. J Control Release. 2004;99(3):357–67.

    Article  CAS  Google Scholar 

  16. Yates I, Regan D, Ketner R, Gamble JF, editors. Calculation of wall thickness and solid volume fraction of spray dried particles by mercury intrusion. AAPS; 2015; Orlando, USA.

  17. Wong J, D’Sa D, Foley M, Chan J, Chan H-K. NanoXCT: A novel technique to probe the internal architecture of pharmaceutical particles. Pharm Res. 2014;31(11):3085–94.

    Article  CAS  Google Scholar 

  18. De Chiffre L, Carmignato S, Kruth JP, Schmitt R, Weckenmann A. Industrial applications of computed tomography. CIRP Ann. 2014;63(2):655–77.

    Article  Google Scholar 

  19. Kampschulte M, Langheinirch A, Sender J, Litzlbauer H, Althöhn U, Schwab J, Alejandre-Lafont E, Martels G, Krombach G. Nano-computed tomography: technique and applications. RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. 2016;188(02):146–54.

    Article  CAS  Google Scholar 

  20. Zabler S, Ullherr M, Fella C, Schielein R, Focke O, Zeller-Plumhoff B, Lhuissier P, DeBoever W, Hanke R. Comparing image quality in phase contrast subμ X-raytomography—A round-robin study. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2020;951:162992.

  21. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc. 2002;206(1):33–40.

    Article  CAS  Google Scholar 

  22. Xi H, Zhu A, Klinzing GR, Zhou L, Zhang S, Gmitter AJ, Ploeger K, Sundararajan P, Mahjour M, Xu W. Characterization of spray dried particles through microstructural imaging. J Pharm Sci. 2020;109(11):3404–12.

    Article  CAS  Google Scholar 

  23. Zhang S, Zhu A. Reconstruction of thin wall features marginally resolved by multi-dimensional images. Application No. 17/204,726. Filing Date 17 March 2021.

  24. Zhang S, Byrnes AP, Jankovic J, Neilly J. Management, analysis, and simulation of micrographs with cloud computing. Microscopy Today. 2019;27(2):26–33.

    Article  Google Scholar 

Download references

Acknowledgements

The BMS team would like to thank Srini Sridharan, Tracy Gaebele, Ana Ferreira, Sai Jayaraman, Patrick Wray, and Andy Ilott (all Bristol-Myers Squibb) for their support during this study and Keith Tame (Scientific & Medical) for instigating the initial collaboration.

Funding

The CEITEC team acknowledges CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110).​ Jozef Kaiser also acknowledges the support of grant FSI-S-20-6353.

Author information

Authors and Affiliations

Authors

Contributions

John Gamble: Conception and design of the work, interpretation of the data, drafting of the work, and final approval of the version to be published

Mike Tobyn: Contributions to the conception, design of the work and drafting/revising of the content, and final approval of the version to be published

Shawn Zhang: Contributions to the design of the work, acquisition and analysis of data, drafting/revising of the content, and final approval of the version to be published

Aiden Zhu: Acquisition and analysis of data, drafting/revising of the content, and final approval of the version to be published

Jakub Šalplachta: Acquisition and analysis of data, drafting/revising of the content, and final approval of the version to be published

Jan Matula: Acquisition and analysis of data, drafting/revising of the content, and final approval of the version to be published

Tomáš Zikmund: Acquisition and analysis of data, drafting/revising of the content, and final approval of the version to be published

Jozef Kaiser: Acquisition and analysis of data, drafting/revising of the content, and final approval of the version to be published

Peter Oberta: Contributions to the design of the work, drafting/revising of the content, and final approval of the version to be published

Corresponding author

Correspondence to John F. Gamble.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamble, J.F., Tobyn, M., Zhang, S. et al. Characterization of the Morphological Nature of Hollow Spray Dried Dispersion Particles Using X-ray Submicron-Computed Tomography. AAPS PharmSciTech 23, 40 (2022). https://doi.org/10.1208/s12249-021-02184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02184-7

KEY WORDS

Navigation