Skip to main content
Log in

Structural, Morphological, and Sorption Characteristics of Imperfect Nanocrystalline Calcium Hydroxyapatite for the Creation of Dental Biomimetic Composites

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Using a set of structural-spectroscopic analysis methods, the relationships between the structure, morphology, and sorption characteristics of samples of nanocrystalline carbonate-substituted calcium hydroxyapatite synthesized with the use of a biogenic source of calcium (avian eggshell) by chemical precipitation from a solution are studied. Using X-ray diffractometry and X-ray microanalysis, impurities are found to enter the structure of the synthesized material from the avian eggshell, which leads to a change in the unit-cell parameters of the hydroxyapatite crystal without the formation of additional phosphate phases. Using optical spectroscopy and electron paramagnetic resonance, it is established that, as a result of the inheritance of a set of carbonate-ion impurities, a structure of B-type hydroxyapatite is formed. An increase in the content of the PO4 phosphate groups during the process of synthesis of materials in the atmosphere results in a decrease in the content of structurally related CO3 groups. A decrease in the pH of the solution at the synthesis stage, due to an increase in the content of \({\text{PO}}_{4}^{{3-}}\) anions, affects the morphology of the samples by increasing the size of defects, i.e., nanopores on the surface of the nanocrystals. Such a change in the morphology of the materials results in changes in the sorption characteristics of the samples, determined by the method of the thermal desorption of nitrogen. The specific surface area of the powders is ~55.5 ± 0.9 m2/g, which many times exceeds known analogs. Despite the developed surface, the samples of carbonate-substituted calcium hydroxyapatite remain stable in an atmosphere of saturated water vapors, and the main losses during polarization are associated with Maxwell–Wagner losses. Analysis of the characteristics of carbonate-substituted hydroxyapatite samples obtained from a biogenic source of calcium shows their potential significance for creating biomimetic materials that imitate the structure, morphology, and anisotropy of the native solid tissue of a human tooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. R. Xavier, P. Desai, V. G. Varanasi, et al., in Nanotechnology in Endodontics, Ed. by A. Kishen, (Springer International, Basel, 2015), p. 5.

    Google Scholar 

  2. N. Eliaz and N. Metoki, Materials 10 (4), 334 (2017).

    Article  CAS  Google Scholar 

  3. S. V. Dorozhkin, Hydroxyapatite and Other Calcium Orthophosphates: Bioceramics, Coatings and Dental (Applications Nova Science Publishers, New York, 2017).

    Google Scholar 

  4. S. S. Mikhail, S. S. Azer, and S. R. Schricker, in Handbook of Nanomaterials Properties, Ed. by B. Bhushan, D. Luo, (Springer, Berlin-Heidelberg, 2014), p. 1377.

    Google Scholar 

  5. I. M. Hamouda and S. H. Shehata, J. Biomed. Res. 25 (6), 418 (2011).

    Article  CAS  Google Scholar 

  6. M. Hannig and C. Hannig, Adv. Dental Res. 24 (2), 53 (2012).

    Article  CAS  Google Scholar 

  7. P. V. Seredin, D. L. Goloshchapov, T. Prutskij, and Y. A. Ippolitov., Res. Phys 7, 1086 (2017).

    Google Scholar 

  8. A. Lübke, J. Enax, K. Wey, et al., Bioinspiration Biomimetics 11 (3), 035001 (2016).

    Article  CAS  Google Scholar 

  9. P. V. Seredin, D. L. Goloshchapov, V. M. Kashkarov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (3), 442 (2018).

    Article  CAS  Google Scholar 

  10. M. Galamboš, P. Suchánek, and O. Rosskopfová, J. Radioanal. Nucl. Chem. 293 (2), 613 (2012).

    Article  CAS  Google Scholar 

  11. F. Barandehfard, M. Kianpour Rad, A. Hosseinnia, et al., Ceramics Int. 42 (15), 17866 (2016).

    Article  CAS  Google Scholar 

  12. J. Kolmas, E. Groszyk, and D. Kwiatkowska-Rozycka, BioMed Res. Int. 2014, 1 (2014).

    Article  CAS  Google Scholar 

  13. V. Mouriño, J. P. Cattalini, and A. R. Boccaccini, J. R. Soc. Interface 9 (68), 401 (2012).

    Article  CAS  Google Scholar 

  14. E. P. Domashevskaya, A. A. Al-Zubadi, D. L. Goloshchapov, et al., J. Surf. Invest. X-ray, Synchrotron Neutron Tech 8 (6), 1128 (2014).

    Article  CAS  Google Scholar 

  15. D. L. Goloshchapov, V. M. Kashkarov, N. A. Rumyantseva, et al., Ceramics Int. 39 (4), 4539 (2013).

    Article  CAS  Google Scholar 

  16. M. Akram, R. Ahmed, I. Shakir, et al., J. Mater. Sci. 49 (4), 1461 (2014).

    Article  CAS  Google Scholar 

  17. T. Laonapakul, KKU Engin. J. 42 (3), 269 (2015).

  18. P. V. Seredin, D. L. Goloshchapov, V. M. Kashkarov, et al., Res. Phys. 6, 447 (2016).

    Google Scholar 

  19. Q. Liu, S. Huang, J. P. Matinlinna, et al., BioMed Res. Int. 2013, 1 (2013).

    Google Scholar 

  20. T. Matsumoto, K. Tamine, R. Kagawa, et al., J. Ceram. Soc. Jpn. 114 (1333), 760 (2006).

    Article  CAS  Google Scholar 

  21. M. Manoj, R. Subbiah, D. Mangalaraj, et al., Nanobiomedicine 2, 1 (2015).

    Article  CAS  Google Scholar 

  22. M. Šupová, Ceram. Int. 41, 9204 (2015).

    Article  CAS  Google Scholar 

  23. N. J. Lakhkar, I. -H. Lee, H.-W. Kim, et al., Adv. Drug Delivery Rev. 65 (4), 405 (2013).

    Article  CAS  Google Scholar 

  24. S. Bose, G. Fielding, S. Tarafder, and A. Bandyopadhyay, Trends Biotechnol. 31 (10), 594 (2013).

    Article  CAS  Google Scholar 

  25. P. Turon, L. del Valle, C. Alemán, and J. Puiggali, Appl. Sci. 7 (1), 60 (2017).

    Article  CAS  Google Scholar 

  26. D. Siva Rama Krishna, A. Siddharthan, S. K. Seshadri, and T. S. Sampath Kumar, J. Mater. Sci. Mater. Medicine 18 (9), 1735 (2007).

    Article  CAS  Google Scholar 

  27. K. Prabakaran, A. Balamurugan, and S. Rajeswari, Bull. Mater. Sci. 28 (2), 115 (2005).

    Article  CAS  Google Scholar 

  28. S. Sasikumar and R. Vijayaraghavan, Trends Biomater. Artificial Organs 19 (2), 70 (2006).

    Google Scholar 

  29. A. P. D. I. Sopyan, M. F. Raihana, M. Hamdi, and S. Ramesh, in Proceed. 4th Kuala Lumpur Int. Conf. on Biomedical Engineering (Kuala Lumpur, 2008), vol. 21, p. 333.

  30. E. Rivera-Muñoz, R. Curiel, and R. Rodriguez, Mater. Res. Innov 7 (2), 85 (2003).

    Article  Google Scholar 

  31. H. Khandelwal and S. Prakash, J. Miner. Mater. Char. Engin 4 (2), 119 (2004).

    Google Scholar 

  32. K. Ishikawa, S. Matsuya, X. Lin, et al., J. Ceram. Soc. Jpn. 118 (1377), 341 (2010).

    Article  CAS  Google Scholar 

  33. A. Sobczak-Kupiec, D. Malina, R. Kijkowska, and Z. Wzorek, Digest J. Nanomater. Biostruct 7 (1), 385 (2012).

    Google Scholar 

  34. G. Penel, C. Delfosse, C. Rey, et al., Dental Med. Problems 40, 37 (2003).

    Google Scholar 

  35. A. F. Khan, M. Awais, A. S. Khan, et al., Appl. Spectr. Rev 48 (4), 329 (2013).

    Article  CAS  Google Scholar 

  36. F. Callens, G. Vanhaelewyn, P. Matthys, and E. Boesman, Appl. Magn. Resonance 14 (2), 235 (1998).

    Article  CAS  Google Scholar 

  37. L. G. Gilinskaya, J. Struct. Chem 51, 471 (2010).

    Article  CAS  Google Scholar 

  38. P. Moens, F. Callens, P. Matthys, et al., J. Chem. Soc. Faraday Trans. 87 (19), 3137 (1991).

    Article  CAS  Google Scholar 

  39. L. M. De Oliveira, A. M. Rossi, R. T. Lopes, and L. N. Rodrigues, Rad. Protection Dosimetry 101 (1–4), 539 (2002).

    Article  CAS  Google Scholar 

  40. S. Itoh, S. Nakamura, T. Kobayashi, et al., Calcified Tissue Int. 78 (3), 133 (2006).

    Article  CAS  Google Scholar 

  41. D. L. Goloshchapov, A. S. Lenshin, E. A. Tutov, et al., Smart Nanocomposites 4 (1), 101 (2013).

    Google Scholar 

  42. S. V. Dorozhkin, Materials 2 (4), 1975 (2009).

    Article  CAS  Google Scholar 

  43. A. M. King`ori, Int. J. Poultry Sci. 10 (11), 908 (2011).

    Article  CAS  Google Scholar 

  44. K. Buddhachat, S. Klinhom, P. Siengdee, et al., PLoS ONE 11 (5) (2016).

  45. Y. Yusufoglu and M. Akinc, J. Am. Ceram. Soc. 91 (1), 77 (2008).

    Article  CAS  Google Scholar 

  46. J. C. De Araújo, E. L. Moreira, V. C. A. Moraes, et al., Mater. Res 14 (3), 376 (2011).

    Article  CAS  Google Scholar 

  47. D. L. Goloshchapov, V. M. Kashkarov, Y. A. Ippolitov, et al., Res. Phys 10, 346 (2018).

    Google Scholar 

  48. P. Seredin, D. Goloshchapov, T. Prutskij, and Y. Ippolitov, PLoS ONE 10 (4), 1 (2015).

    Article  CAS  Google Scholar 

  49. H. Ishii and M. Ikeya, Appl. Rad. Isotopes 44 (1), 95 (1993).

    Article  CAS  Google Scholar 

  50. M. Mujahid, S. Sarfraz, S. Amin, et al., Mater. Res 18 (3), 468 (2015).

    Article  CAS  Google Scholar 

  51. A. V. Teterskij, V. A. Morozov, S. Y. Stefanovich, and B. I. Lazoryak, Russ. J. Inorgan. Chem 50 (7), 986 (2005).

    Google Scholar 

  52. J. P. Gittings, C. R. Bowen, A. C. E. Dent, et al., Acta Biomaterialia 5 (2), 743 (2009).

    Article  CAS  Google Scholar 

  53. M. P. Mahabole, R. C. Aiyer, C. V. Ramakrishna, et al., Bull. Mater. Sci. 28 (6), 535 (2005).

    Article  CAS  Google Scholar 

  54. K. Mensah-Darkwa, R. K. Gupta, and D. Kumar, J. Mater. Sci. Technol 29 (9), 788 (2013).

    Article  CAS  Google Scholar 

  55. B. V. Jogiya, H. O. Jethava, K. P. Tank, et al., AIP Conf. Proceed. 1728 (1), 020227 (2016).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Russian Foundation for basic Research, grant number 18-29-11008 mk. The study on the synthesis of carbonate substituted calcium hydroxyapatite nanocrystalline was carried out with the support of the grant of the President of the Russian Federation no. MK-419.2019.2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. L. Goloshchapov or P. V. Seredin.

Additional information

Translated by D. Churochkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goloshchapov, D.L., Lenshin, A.S., Nikitkov, K.A. et al. Structural, Morphological, and Sorption Characteristics of Imperfect Nanocrystalline Calcium Hydroxyapatite for the Creation of Dental Biomimetic Composites. J. Surf. Investig. 13, 756–765 (2019). https://doi.org/10.1134/S1027451019040244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019040244

Keywords:

Navigation