Skip to main content
Log in

Verification of z-Scaling in p + p, \(\bar {p} + p\) and Au + Au Collisions at RHIC, Tevatron and LHC

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Experimental data on transverse momentum spectra of charged hadrons, strange particles, top quark and jets produced in \(p + p\) and \(\bar {p} + p\) collisions obtained at RHIC, Tevatron, and LHC are analyzed in the framework of \(z\)-scaling approach. The concept of the \(z\)-scaling based on fundamental principles of self-similarity, locality, and fractality of hadron interactions is verified over a wide range of collision energy and transverse momentum for different particle species. General properties of the data \(z\)-presentation are reviewed. A microscopic scenario of constituent interactions developed within the \(z\)-scaling scheme is used to study the dependence of momentum fractions and recoil mass on the collision energy, transverse momentum and mass of produced inclusive particle, and to estimate the constituent energy loss. Results of analysis in the framework of \(z\)-scaling of the negative particle spectra in \({\text{Au}} + {\text{Au}}\) collisions obtained by the STAR Collaboration in the first phase of the Beam Energy Scan program at RHIC are presented. New indication on self-similarity of fractal structure of nuclei and fragmentation processes is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. L. M. Lederman and C. T. Hill, Symmetry and the Beautiful Universe (Prometheus Books, New York, 2004).

    MATH  Google Scholar 

  2. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, Oxford, 1971).

    Google Scholar 

  3. H. E. Stanley, “Scaling, universality, and renormalization: Three pillars of modern critical phenomena,” Rev. Mod. Phys. 71, S358–S366 (1999).

    Article  Google Scholar 

  4. A. Hankey and H. E. Stanley, “Systematic application of generalized homogeneous functions to static scaling, dynamic scaling, and universality,” Phys. Rev. B 6, 3515–3542 (1972).

    Article  ADS  Google Scholar 

  5. S. Lübeck, “Universal scaling behavior of non-equilibrium phase transitions,” Int. J. Mod. Phys. B 18, 3977–4118 (2004).

    Article  ADS  MATH  Google Scholar 

  6. R. P. Feynman, “Very high-energy collisions of hadrons,” Phys. Rev. Lett. 23, 1415–1417 (1969).

    Article  ADS  Google Scholar 

  7. J. D. Bjorken, “Asymptotic sum rules at infinite momentum,” Phys. Rev. 179, 1547–1553 (1969).

    Article  ADS  Google Scholar 

  8. J. D. Bjorken and E. A. Paschos, “Inelastic electron-proton and γ-proton scattering and the structure of the nucleon,” Phys. Rev. 185, 1975–1982 (1969).

    Article  ADS  Google Scholar 

  9. P. Bosted, R. G. Arnold, S. Rock, and Z. Szalata, “Nuclear scaling in inelastic electron scattering from d, 3He, and 4He,” Phys. Rev. Lett. 49, 1380–1383 (1982).

    Article  ADS  Google Scholar 

  10. J. Benecke, T. T. Chou, C. N. Yang, and E. Yen, “Hypothesis of limiting fragmentation in high-energy collisions,” Phys. Rev. 188, 2159–2169 (1969).

    Article  ADS  Google Scholar 

  11. A. M. Baldin, “The physics of relativistic nuclei,” Sov. J. Part. Nucl. 8, 175–195 (1977).

    ADS  Google Scholar 

  12. V. S. Stavinsky, “Limiting fragmentation of nuclei-cumulative effect,” Sov. J. Part. Nucl. 10, 949–995 (1979).

    Google Scholar 

  13. G. A. Leksin, “Nuclear scaling. Elementary particles,” in Proc. 33rd Physics School ITEF (Moscow, 1975), No. 2, p. 5; G. A. Leksin, “Nuclear scaling,” Report No. ITEF-147 (Moscow, 1975), p. 90.

  14. G. A. Leksin, in Proceedings of the 18th International Conf. on High Energy Physics, Tbilisi, USSR,1976, Ed. by N. N. Bogolubov et al. (JINR, D1, 2-10400, Tbilisi, 1977), p. A6-3.

  15. G. A. Leksin, “Methods for investigating nuclear matter under the conditions characteristic of its transition to quark-gluon plasma,” Phys. At. Nucl. 65, 1985–1994 (2002).

    Article  Google Scholar 

  16. Z. Koba, H. B. Nielsen, and P. Olesen, “Scaling of multiplicity distributions in high-energy hadron collisions,” Nucl. Phys. B 40, 317–334 (1972).

    Article  ADS  Google Scholar 

  17. A. M. Polyakov, “A similarity hypothesis in the strong interactions. I. Multiple hadron production in e+e-annihilation,” Sov. Phys 32, 296–301 (1971).

    ADS  Google Scholar 

  18. A. M. Polyakov, “A similarity hypothesis in the strong interactions. II. Cascade production of hadrons and their energy distribution associated with e+e-annihilation,” Sov. Phys. JETP 33, 850–855 (1971).

    ADS  Google Scholar 

  19. V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, “Automodelity, current algebra and vector dominance in deep inelastic lepton-hadron interactions,” Part. Nucl. 2, 5–32 (1971).

    Google Scholar 

  20. V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, “Automodelity in strong interactions,” Lett. Nuovo Cim. 5, 907–912 (1972).

    Article  Google Scholar 

  21. V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, “Automodellism in the large-angle elastic scattering and structure of hadrons,” Lett. Nuovo Cim. 7, 719–723 (1973).

    Article  Google Scholar 

  22. S. J. Brodsky and G. R. Farrar, “Scaling laws at large transverse momentum,” Phys. Rev. Lett. 31, 1153–1156 (1973).

    Article  ADS  Google Scholar 

  23. S. J. Brodsky and G. R. Farrar, “Scaling laws for large-momentum-transfer processes,” Phys. Rev. D: Part. Fields 11, 1309–1330 (1975).

    Article  ADS  Google Scholar 

  24. L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity (World Sci., 1993).

    Book  MATH  Google Scholar 

  25. L. Nottale, “Scale relativity and fractal space-time: Theory and applications,” Found. Sci. 15, 101–152 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Nottale, Scale Relativity and Fractal Space-Time: a New Approach to Unifying Relativity and Quantum Mechanics (World Sci., 2011).

    Book  MATH  Google Scholar 

  27. I. Zborovský and M. V. Tokarev, “Generalized z-scaling in proton-proton collisions at high energies,” Phys. Rev. D: Part. Fields 75, 094008 (2007).

    Article  ADS  Google Scholar 

  28. I. Zborovský and M. V. Tokarev, “New properties of z‑scaling: Flavor independence and saturation at low z,” Int. J. Mod. Phys. A 24, 1417–1442 (2009).

    Article  ADS  Google Scholar 

  29. M. V. Tokarev and T. G. Dedovich, “z-Scaling and jet production in hadron-hadron collisions at high energies,” Int. J. Mod. Phys. A 15, 3495–3519 (2000).

    ADS  Google Scholar 

  30. M. V. Tokarev, I. Zborovský, and T. G. Dedovich, “Self-similarity of jet production in p + p and p + \(\bar {p}\) collisions at RHIC, tevatron and LHC,” Int. J. Mod. Phys. A 27, 1250115 (2012).

    Article  ADS  Google Scholar 

  31. M. V. Tokarev and I. Zborovský, “Self-similarity of high-pT hadron production in pp and \(p\bar {p}\) cumulative processes and violation of discrete symmetries at small scales (suggestion for experiment),” Phys Part. Nucl. Lett. 7, 160–170 (2010).

    Article  Google Scholar 

  32. M. V. Tokarev, I. Zborovský, A. O. Kechechyan, and A. Alakhverdyants, “Search for signatures of phase transition and critical point in heavy-ion collisions,” Phys Part. Nucl. Lett. 8, 533–541 (2011).

    Article  Google Scholar 

  33. M. V. Tokarev and I. Zborovský, “Energy scan in heavy-ion collisions and search for a critical point,” Phys. At. Nucl. 75, 700–706 (2012).

    Article  Google Scholar 

  34. M. V. Tokarev and I. Zborovský, “On self-similarity of top production at tevatron,” Int. J. Mod. Phys. A 3, 815–820 (2012).

    Google Scholar 

  35. M. V. Tokarev and I. Zborovský, “z-Scaling as manifestation of symmetry in Nature,” in Selected Papers of the Seminar (2002–2005), “Symmetries and Integrable Systems”, Ed. by A. N. Sysakian (JINR, Dubna, 2006), Vol. 2, p. 154.

  36. M. V. Tokarev and I. Zborovský, “Self-similarity of hadron production: z-scaling,” Theor. Math. Phys. 184, 530–543 (2015).

    Article  MathSciNet  Google Scholar 

  37. M. V. Tokarev, “z-Scaling at RHIC,” Phys. Part. Nucl. Lett. 3, 7–17 (2006).

    Article  Google Scholar 

  38. M. V. Tokarev, “Scaling in heavy ion collisions at the RHIC,” Phys. Part. Nucl. Lett. 4, 403–414 (2007).

    Article  Google Scholar 

  39. M. V. Tokarev and I. Zborovský, “Self-similarity of pion production in AA collisions at RHIC,” Phys. Part. Nucl. Lett. 7, 171–184 (2010).

    Article  Google Scholar 

  40. M. V. Tokarev (for the STAR Collab.), “High-pT spectra of charged hadrons in Au+Au collisions at \(\sqrt {{{s}_{{NN}}}} \) = 9.2 GeV in STAR,” Phys. At. Nucl. 74, 799–804 (2011).

    Article  Google Scholar 

  41. M. V. Tokarev and I. Zborovský, “Beam energy scan at RHIC and z-scaling,” Nucl. Phys. B Proc. Suppl. 245, 231–238 (2013).

    Article  ADS  Google Scholar 

  42. M. V. Tokarev and I. Zborovský, “Energy loss in heavy ion collisions,” in Proc. 40th Int. Symp. on Multiparticle Dynamics (ISMD 2010) (Antwerp, Sept. 21–25, 2010), p. 301.

  43. I. Zborovský, Yu. A. Panebratsev, M. Tokarev, and G. Škoro, “Z scaling in hadron-hadron collisions at high energies,” Phys. Rev. D: Part. Fields 54, 5548–5557 (1996).

    Article  ADS  Google Scholar 

  44. M. V. Tokarev, I. Zborovský, Yu. Panebratsev, and G. Škoro, “A-dependence of z-scaling,” Int. J. Mod. Phys. A 16, 1281–1302 (2001).

    Article  ADS  Google Scholar 

  45. M. V. Tokarev and I. Zborovský, “Multiplicity dependence of z scaling for identified hadrons,” Phys. Atom. Nucl. 70, 1294–1304 (2007).

    Article  ADS  Google Scholar 

  46. M. V. Tokarev (for the STAR Collab.), “Self-similarity of negative particle production from the beam energy scan program at STAR,” Int. J. Mod. Phys. Conf. Ser. 39, 1560103 (2015).

    Article  Google Scholar 

  47. M. V. Tokarev and I. Zborovský, “New indication on scaling properties of strangeness production in p + p collisions at RHIC,” Int. J. Mod. Phys. A 32, 1750029 (2017).

    Article  ADS  Google Scholar 

  48. B. I. Abelev et al. (STAR Collab.), Experimental study of the QCD phase diagram & search for the critical point: Selected arguments for the Run-10 beam energy scan (June 4, 2009). http://drupal.star.bnl.gov/ STAR/starnotes/public/sn0493.

  49. B. I. Abelev et al. (STAR Collab.), “Identified particle production, azimuthal anisotropy, and interferometry measurements in Au + Au collisions at \(\sqrt {{{s}_{{NN}}}} \) = 9.2 GeV,” Phys. Rev. C 81, 024911 (2010).

    Article  ADS  Google Scholar 

  50. STAR Collab., “Studying the phase diagram of QCD matter at RHIC,” STAR Note SN0598 (June 1, 2014).

  51. V. V. Abramov et al., “Hadron production at transverse momenta from 0.5 GeV/c up to 2.2 GeV/c in proton proton collisions at 70 GeV,” Nucl. Phys. B 173, 348–364 (1980).

    Article  ADS  Google Scholar 

  52. V. V. Abramov et al., “Production of charged hadrons with large transverse momenta in pp collisions at 70 GeV,” JETP Lett. 33, 289–293 (1981).

    ADS  Google Scholar 

  53. D. Antreasyan et al., “Production of hadrons at large transverse momentum in 200-, 300-, and 400-GeV pp and p–nucleus collisions,” Phys. Rev. D: Part. Fields 19, 764–778 (1979).

    Article  ADS  Google Scholar 

  54. D. E. Jaffe et al., “High-transverse-momentum single-hadron production in pp and pd collisions at \(\sqrt {{{s}_{{NN}}}} \) = 27.4 and 38.8 GeV,” Phys. Rev. D: Part. Fields 40, 2777–2795 (1989).

    Article  ADS  Google Scholar 

  55. A. Breakstone et al. (ABCDHW Collab.), “Inclusive charged particle cross-sections in full phase space from proton–proton interactions at ISR energies,” Z. Phys. C 69, 55–66 (1995).

    Article  Google Scholar 

  56. D. Drijard et al. (CDHW Collab.), “A measurement of the inclusive cross-section of charged pions at very high transverse momenta,” Nucl. Phys. B 208, 1–11 (1982).

    Article  ADS  Google Scholar 

  57. G. Agakishiev et al. (STAR Collab.), “Identified hadron compositions in p + p and Au + Au collisions at high transverse momenta at \(\sqrt {{{s}_{{NN}}}} \) = 200 GeV,” Phys. Rev. Lett. 108, 072302 (2012).

    Article  ADS  Google Scholar 

  58. B. I. Abelev et al. (STAR Collab.), “Strange particle production in p + p collisions at \(\sqrt {{{s}_{{NN}}}} \)= 200 GeV,” Phys. Rev. C 75, 064901 (2007).

    Article  ADS  Google Scholar 

  59. J. Adams et al. (STAR Collab.), “K(892)* resonance production in Au + Au and p + p collisions at \(\sqrt {{{s}_{{NN}}}} \) = 200 GeV at STAR,” Phys. Rev. C 71, 064902 (2005).

    Article  ADS  Google Scholar 

  60. A. Adare et al. (PHENIX Collab.), “Measurement of \(K_{s}^{0}\) and K*0 in p + p, d + Au, and Cu + Cu collisions at \(\sqrt {{{s}_{{NN}}}} \) = 200 GeV,” Phys. Rev. C 90, 054905 (2014).

    Article  ADS  Google Scholar 

  61. A. Adare et al. (PHENIX Collab.), “Measurement of neutral mesons in p + p collisions at \(\sqrt {{{s}_{{NN}}}} \) = 200 GeV and scaling properties of hadron production,” Phys. Rev. D: Part. Fields 83, 052004 (2011).

    Article  ADS  Google Scholar 

  62. B. I. Abelev et al. (STAR Collab.), “Strange baryon resonance production in \(\sqrt {{{s}_{{NN}}}} \) = 200 GeV p+p and Au + Au collisions,” Phys. Rev. Lett. 97, 132301 (2006).

    Article  ADS  Google Scholar 

  63. J. Adams et al. (STAR Collab.), “Identified hadron spectra at large transverse momentum in p + p and d + Au collisions at \(\sqrt {{{s}_{{NN}}}} \) = 200 GeV,” Phys. Lett. B 637, 161–169 (2006).

    Article  ADS  Google Scholar 

  64. B. Alper et al. (BS Collab.), “Production spectra of π±, K±, p± at large angles in proton-proton collisions in the CERN Intersecting Storage Rings,” Nucl.Phys. B 100, 237–290 (1975).

    Article  ADS  Google Scholar 

  65. F. W. Busser et al., “K0 and Λ production at the CERN ISR,” Phys. Lett. B 61, 309–312 (1976).

    Article  ADS  Google Scholar 

  66. H. Kichimi et al., “Inclusive study of strange particle production in p–p interactions at 405 GeV/c,” Phys. Rev. D 20, 37–52 (1979).

    Article  ADS  Google Scholar 

  67. D. Drijard et al., “Neutral strange particle production in proton-proton collisions at \(\sqrt {{{s}_{{NN}}}} \) = 63 GeV,” Z. Phys. C 12, 217–224 (1982).

    ADS  Google Scholar 

  68. T. Akesson et al. (AFS Collab.), “Inclusive vector-meson production in the central region of p + p collisions at \(\sqrt {{{s}_{{NN}}}} \) = 63 GeV,” Nucl. Phys. B 203, 27–39 (1982);

    Article  ADS  Google Scholar 

  69. Nucl. Phys. B 229, 541(E) (1983).

  70. A. Aduszkiewicz et al. (NA61/SHINE Collab.), “Production of Λ-hyperons in inelastic p + p interactions at 158 GeV/c,” Eur. Phys. J. C 76, 198 (2016).

    Article  ADS  Google Scholar 

  71. S. V. Afanasiev et al. (NA49 Collab.), “Production of φ mesons in p + p, p + Pb and central Pb +Pb collisions at Ebeam = 158 A GeV,” Phys. Lett. B 491, 59–66 (2000).

    Article  ADS  Google Scholar 

  72. T. Anticic et al. (NA49 Collab.), “K*(892)0 and \(\bar {K}{\text{*}}\)(892)0 production in central Pb + Pb, Si + Si, C + C, and inelastic p + p collisions at 158 A GeV,” Phys. Rev. C 84, 064909 (2011).

    Article  ADS  Google Scholar 

  73. J. Adams et al. (STAR Collab.), “ϕ meson production in Au + Au and p + p collisions at \(\sqrt {{{s}_{{NN}}}} \) = 200 GeV,” Phys. Lett. B 612, 181–189 (2005).

    Article  ADS  Google Scholar 

  74. F. Abe et al. (CDF Collab.), “Observation of top quark production in \(p\bar {p}\) collisions with the Collider Detector at Fermilab,” Phys. Rev. Lett. 74, 2626–2631 (1995).

    Article  ADS  Google Scholar 

  75. S. Abachi et al. (DØ Collab.), “Observation of the top quark,” Phys. Rev. Lett. 74, 2632–2637 (1995).

    Article  ADS  Google Scholar 

  76. V. M. Abazov et al. (DØ Collab.), “Dependence of the \(t\bar {t}\) production cross section on the transverse momentum of the top quark,” Phys. Lett. B 693, 515–521 (2010).

    Article  ADS  Google Scholar 

  77. S. Chatrchyan et al. (CMS Collab.), “Measurement of differential top-quark pair production cross sections in pp colisions at \(\sqrt s \) = 7 TeV,” Eur. Phys. J. C 73, 2339 (2013).

    Article  ADS  Google Scholar 

  78. V. Khachatryan et al. (CMS Collab.), “Measurement of the differential cross section for top quark pair production in pp collisions at \(\sqrt s \) = 8 TeV,” Eur. Phys. J. C 75, 542 (2015).

    Article  ADS  Google Scholar 

  79. V. Khachatryan et al. (CMS Collab.), “Measurement of the integrated and differential \(t\bar {t}\) production cross sections for high-pt top quarks in pp collisions at \(\sqrt s \) = 8 TeV,” Phys. Rev. D: Part. Fields 94, 072002 (2016).

    Article  ADS  Google Scholar 

  80. CMS Collab., “Measurement of the differential cross section for \(t\bar {t}\) production in the dilepton final state at \(\sqrt s \) = 13 TeV,” CMS PAS TOP-16-011.

  81. G. Aad et al. (ATLAS Collab.), “Measurements of normalized differential cross sections for \(t\bar {t}\) production in pp collisions at \(\sqrt s \) = 7 TeV using the ATLAS detector,” Phys. Rev. D: Part. Fields 90, 072004 (2014).

    Article  ADS  Google Scholar 

  82. G. Aad et al. (ATLAS Collab.), “Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at \(\sqrt s \) = 7 TeV in the ATLAS detector,” J. High Energy Phys. 06, 100 (2015).

    Article  ADS  Google Scholar 

  83. G. Aad et al. (ATLAS Collab.), “Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in \(\sqrt s \) = 8 TeV proton-proton collisions using the ATLAS detector,” Phys. Rev. D: Part. Fields 93, 032009 (2016).

    Article  ADS  Google Scholar 

  84. G. Aad et al. (ATLAS Collab.), “Measurements of top-quark pair differential cross-sections in the lepton + jets channel in pp collisions at \(\sqrt s \) = 8 TeV using the ATLAS detector,” Eur. Phys. J. C 76, 538 (2016).

    Article  ADS  Google Scholar 

  85. V. M. Abazov et al. (DØ Collab.), “Measurement of differential production cross sections in \(p\bar {p}\) collisions,” Phys. Rev. D: Part. Fields 90, 092006 (2014).

    Article  ADS  Google Scholar 

  86. G. Aad et al. (ATLAS Collab.), “Measurement of the inclusive jet cross-section in pp collisions at \(\sqrt s \) = 2.76 TeV and comparison to the inclusive jet cross-section at \(\sqrt s \) = 7 TeV using the ATLAS detector,” Eur. Phys. J. C 73, 2509 (2013).

    Article  ADS  Google Scholar 

  87. B. Abelev et al. (ALICE Collab.), “Measurement of the inclusive differential jet cross section in pp collisions at \(\sqrt s \) = 2.76 TeV,” Phys. Lett. B 722, 262–272 (2013).

    Article  ADS  Google Scholar 

  88. CMS Collab., “Measurement of the double-differential inclusive jet cross section at \(\sqrt s \) = 8 TeV with the CMS detector,” PAS-SMP-12-012.

  89. M. Aaboud et al. (ATLAS Collab.), “Measurement of the inclusive jet cross-sections in proton-proton collisions at \(\sqrt s \) = 8 TeV with the ATLAS detector,” J. High Energy Phys. 09, 020 (2017).

  90. V. M. Abazov et al. (DØ Collab.), “Measurement of the inclusive jet cross section in \(p\bar {p}\) collisions at \(\sqrt s \) = 1.96 TeV,” Phys. Rev. D: Part. Fields 85, 052006 (2012).

    Article  ADS  Google Scholar 

  91. A. Abulencia et al. (CDF Collab.), “Measurement of the inclusive jet cross section using the kT algorithm in \(p\bar {p}\) collisions at \(\sqrt s \) = 1.96 TeV,” Phys. Rev. Lett. 96, 122001 (2006).

    Article  ADS  Google Scholar 

  92. A. Abulencia et al. (CDF Collab.), “Measurement of the inclusive jet cross section in \(p\bar {p}\) interactions at \(\sqrt s \) = 1.96 TeV using a cone-based jet algorithm,” Phys. Rev. D: Part. Fields 74, 071103(R) (2006).

  93. A. Abulencia et al. (CDF Collab.), “Measurement of the inclusive jet cross section using the kT algorithm in \(p\bar {p}\) collisions at \(\sqrt s \) = 1.96 TeV with the CDF II detector,” Phys. Rev. D: Part. Fields 75, 092006 (2007).

    Article  ADS  Google Scholar 

  94. T. Aaltonen et al. (CDF Collab.), “Measurement of the inclusive jet cross section at the Fermilab Tevatron \(p\bar {p}\) collider using a cone-based jet algorithm,” Phys. Rev. D: Part. Fields 78, 052006 (2008); Phys. Rev. D 79, 119902(E) (2009).

    Article  ADS  Google Scholar 

  95. S. Chatrchyan et al. (CMS Collab.), “Measurements of differential jet cross sections in proton-proton collisions at \(\sqrt s \) = 7 TeV with the CMS detector,” Phys. Rev. D: Part. Fields 87, 112002 (2013).

    Article  ADS  Google Scholar 

  96. G. Aad et al. (ATLAS Collab.), “Measurement of inclusive jet and dijet production in pp collisions at \(\sqrt s \) = 7 TeV using the ATLAS detector,” Phys. Rev. D: Part. Fields 86, 014022 (2012).

    Article  ADS  Google Scholar 

  97. B. Abbott et al. (DØ Collab.), “High-pT jets in \(p\bar {p}\) collisions at \(\sqrt s \) = 630 GeV and 1800 GeV,” Phys. Rev. D: Part. Fields 64, 032003 (2001).

    Article  ADS  Google Scholar 

  98. V. D. Elvira, “Measurement of the inclusive jet cross sections at \(\sqrt s \) = 1.8 TeV with the DØ detector,” Ph.D Thesis (Universodad de Buenos Aires, 1995).

  99. V. M. Abazov et al. (DØ Collab.), “The inclusive jet cross section in \(p\bar {p}\) collisions at \(\sqrt s \) = 1.8 TeV using the k algorithm,” Phys. Lett. B 525, 211–218 (2002).

    Article  ADS  Google Scholar 

  100. V. M. Abazov et al. (DØ Collab.), “Measurement of the inclusive jet cross section in \(p\bar {p}\) collisions at \(\sqrt s \) = 1.96 TeV,” Phys. Rev. Lett. 101, 062001 (2008).

    Article  ADS  Google Scholar 

  101. M. Begel (for the DØ Collab.), Jet mmeasurements at \(\sqrt s \) = 1.96 TeV; arXiv:hep-ex/0305072.

  102. F. Abe et al. (CDF Collab.), “Inclusive jet cross section in \(p\bar {p}\) collisions at \(\sqrt s \) = 1.8 TeV,” Phys. Rev. Lett. 77, 438–443 (1996).

    Article  ADS  Google Scholar 

  103. T. Affolder et al. (CDF Collab.), “Measurement of the inclusive jet cross section in \(p\bar {p}\) collisions at \(\sqrt s \) = 1.8 TeV,” Phys. Rev. D: Part. Fields 64, 032001 (2001).

    Article  ADS  Google Scholar 

  104. J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, “Comparison of chemical freeze-out criteria in heavy-ion collisions,” Phys. Rev. C 73, 034905 (2006).

    Article  ADS  Google Scholar 

  105. S. Wheaton, J. Cleymans, and M. Hauer, “THERMUS: A thermal model package for ROOT,” Comput. Phys. Commun. 180, 84–106 (2009).

    Article  ADS  Google Scholar 

  106. A. Andronic, P. Braun-Munzinger, and J. Stachel, “Hadron production in central nucleus-nucleus collisions at chemical freeze-out,” Nucl. Phys. A 772, 167–199 (2006).

    Article  ADS  Google Scholar 

  107. A. Andronic, P. Braun-Munzinger, and J. Stachel, “The horn, the hadron mass spectrum and the QCD phase diagram: The statistical model of hadron production in central nucleus-nucleus collisions,” Nucl. Phys. A 834, 237C (2010).

    Article  ADS  Google Scholar 

  108. F. Becattini, J. Manninen, and M. Gazdzicki, “Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions,” Phys. Rev. C 73, 044905 (2006).

    Article  ADS  Google Scholar 

  109. M. M. Aggarwal et al. (STAR Collab.), An experimental exploration of the QCD phase diagram: The search for the critical point and the onset of deconfinement. arXiv:1007.2613.

  110. L. Kumar (for the STAR Collab.), “Bulk properties in Au + Au collisions at \(\sqrt {{{s}_{{NN}}}} \) = 9.2 GeV in STAR experiment at RHIC,” Nucl. Phys. A 830, 275C–278C (2009).

    Article  ADS  Google Scholar 

  111. B. Mohanty (for the STAR Collab.), “QCD phase diagram: Phase transition, critical point and fluctuations,” Nucl. Phys. A 830, 899C–907C (2009).

    Article  ADS  Google Scholar 

  112. L. Kumar (for the STAR Collab.), “Results from the STAR beam energy scan program,” Nucl. Phys. A 862–863, 123–131 (2011).

    Google Scholar 

  113. L. Adamczyk et al. (STAR Collab.), “Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program,” Phys. Rev. C 96, 044904 (2017).

    Article  ADS  Google Scholar 

  114. N. A. Nikiforov et al., “Backward production of pions and kaons in the interaction of 400 GeV protons with nuclei,” Phys. Rev. C C22, 700–710 (1980).

    Article  ADS  Google Scholar 

  115. O. P. Gavrishchuk et al., “Charged pion backward production in 15–65 GeV proton–nucleus collisions,” Nucl. Phys. A 523, 589–596 (1991).

    Article  ADS  Google Scholar 

  116. I. M. Belyaev et al., “Production of cumulative pions and kaons in proton-nucleus interactions at energies from 15 to 65 GeV,” Yad. Fiz. 56, 135–152 (1993).

    Google Scholar 

  117. V. K. Bondarev, “Cumulative production of particles on proton and nucleus beams,” Phys. Part. Nucl. 28, 5–36 (1997).

    Article  Google Scholar 

  118. L. S. Azhgirei et al., “Knock out deutrons from Li, Be, C and O nuclei by protons of energy 675 MeV,” Zh. Eksp. Teor. Fiz. 33, 1185–1195 (1957).

    Google Scholar 

  119. K. Brueckner and C. Levinson, “Approximate reduction of the many-body problem for strongly interacting particles,” Phys. Rev. 97, 1344–1352 (1955).

    Article  ADS  MATH  Google Scholar 

  120. K. Brueckner, “Two-body forces and nuclear saturation. III. Details of the structure of the nucleus,” Phys. Rev. 97, 1353–1366 (1955).

    Article  ADS  MATH  Google Scholar 

  121. K. Brueckner, “Many-body problem for strongly interacting particles. II. Linked cluster expansion,” Phys. Rev. 100, 36–45 (1955).

    Article  ADS  MATH  Google Scholar 

  122. D. I. Blokhintsev, “On the fluctuations of nuclear matter,” Sov. Phys. JETP 6, 995–999 (1958).

    ADS  Google Scholar 

  123. V. V. Burov, V. K. Lukyanov, and A. I. Titov, “Large momentum pion production in proton nucleus collisions and the idea of “fluctuons” in nuclei,” Phys. Lett. B 67, 46–48 (1977).

    Article  ADS  Google Scholar 

  124. V. K. Lukyanov and A. I. Titov, “Nuclear reactions with large momentum transfer and hypothesis of “fluctons” in nuclei,” Fiz. Elem. Chast. Atom. Yadra 10, 815–849 (1979).

    Google Scholar 

  125. L. L. Frankfurt and M. I. Strikman, “High-energy phenomena, short-range nuclear structure and QCD,” Phys. Rep. 76, 215–347 (1981).

    Article  ADS  Google Scholar 

  126. L. L. Frankfurt and M. I. Strikman, “Hard nuclear processes and microscopic nuclear structure,” Phys. Rep. 160, 235–427 (1988).

    Article  ADS  Google Scholar 

  127. A. V. Efremov, “Quark-parton picture of cumulative production,” Sov. J. Part. Nucl. 13, 254–263 (1982).

    Google Scholar 

  128. A. V. Efremov, A. B. Kaidalov, V. T. Kim, et al., “Cumulative hadron production in quark models of flucton fragmentation,” Sov. J. Nucl. Phys. 47, 1364–1374 (1988).

    Google Scholar 

  129. M. A. Braun and V. V. Vechernin, “Cumulative phenomena in the QCD approach,” Nucl. Phys. B. Proc. Suppl. 92, 156–161 (2001).

    Article  ADS  Google Scholar 

  130. A. A. Baldin and A. M. Baldin, “Relativistic nuclear physics: Relative 4-velocity space, symmetries of solutions, correlation depletion principle, similar attitude, intermediate asymptotics,” Phys. Part. Nucl. 29, 232–253 (1998).

    Article  Google Scholar 

  131. V. V. Ammosov et al., “Measurement of the yields of positively charged particles at an angle of 35° in proton interactions with nuclear targets at an energy of 50 GeV,” Phys. At. Nucl. 76, 1213–1218 (2013).

    Article  Google Scholar 

Download references

Funding

This work was partially supported by Project funded by the MEYS of the Czech Republic under the contract LTT18021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Tokarev, I. Zborovský or A. O. Kechechyan.

Additional information

To the memory of Milan Vymazal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokarev, M.V., Zborovský, I., Kechechyan, A.O. et al. Verification of z-Scaling in p + p, \(\bar {p} + p\) and Au + Au Collisions at RHIC, Tevatron and LHC. Phys. Part. Nuclei 51, 141–171 (2020). https://doi.org/10.1134/S1063779620020045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620020045

Keywords:

Navigation