Skip to main content
Log in

Various Applications of Precision Low-Energy Nuclear Electron Spectrometry in the KATRIN Tritium Neutrino Project

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The energy scale of the main spectrometer in the KATRIN tritium project is required to remain stable within ±60 meV at an electron energy of 18.6 keV for two months in order to reach the intended sensitivity of 0.2 eV for the rest mass of the electron antineutrino. A natural source of reference electrons with an energy of 17824.3 ± 0.5 eV based on K-conversion electrons of the 32-keV nuclear γ-transition in 83mKr from the decay of parent 83Rb was developed for this purpose using precision low-energy nuclear electron spectrometry. The spectroscopic parameters of 83mKr/83Rb sources fabricated by ion implantation into polycrystalline platinum foils were significantly better than the parameters of vacuum-deposited sources. A large-scale study of the influence of the physicochemical environment of atoms of different radioisotopes in various matrices of vacuum-deposited and implanted radioactive sources on the energy of emitted conversion and Auger electrons and on the structure of the corresponding energy spectra was conducted in the process. The possibility of application of photoelectron sources with a metallic converter as sources of reference electrons for the KATRIN project was also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.

Similar content being viewed by others

REFERENCES

  1. C. S. Cook, M. Langer, and H. C. Price, Jr., Phys. Rev. 73, 1395 (1948).

    Article  ADS  Google Scholar 

  2. D. R. Hamilton, W. P. Alford, and L. Gross, Phys. Rev. 83, 215 (1951).

    Google Scholar 

  3. L. M. Langer and R. J. D. Moffat, Phys. Rev. 88, 689—694 (1952).

    Article  ADS  Google Scholar 

  4. F. T. Porter, Phys. Rev. 115, 450–453 (1959).

    Article  ADS  Google Scholar 

  5. R. C. Salgo and H. H. Staub, Nucl. Phys. A 138, 417–428 (1969).

    Article  ADS  Google Scholar 

  6. R. Daris and C. St-Pierre, Nucl. Phys. A 138, 545–555 (1969).

    Article  ADS  Google Scholar 

  7. K.-E. Bergkvist, Nucl. Phys. B 39, 317–370 (1972).

    Article  ADS  Google Scholar 

  8. B. C. Kozik, B. A. Lyubimov, E. G. Novikov, et al., Yad. Fiz. 32, 309 (1980).

    Google Scholar 

  9. M. Fritschi, E. Holzschuh, W. Kündig, J. W. Peterson, R. E. Pixley, and H. Stüssi, Phys. Lett. B 173, 485 (1986).

    Article  ADS  Google Scholar 

  10. J. F. Wilkerson, T. J. Bowles, J. C. Browne, M. P. Maley, R. G. H. Robertson, J. S. Cohen, R. L. Martin, D. A. Knapp, and J. A. Helffrich, Phys. Rev. Lett. 58, 2023 (1987).

    Article  ADS  Google Scholar 

  11. H. Kawakami, K. Nisimura, T. Oshima, S. Shibata, Y. Shoji, I. Sugai, K. Ukai, T. Yasuda, N. Morikawa, N. Nogawa, T. Nagafuchi, F. Naito, T. Susuki, H. Taketani, N. Iwahashi, et al., Phys. Lett. B 187, 198 (1987).

    Article  ADS  Google Scholar 

  12. J. F. Wilkerson, T. J. Bowles, J. L. Friar, R. G. H. Robertson, G. J. Stephenson, Jr., D. L. Wark, and D. A. Knapp, Nucl. Phys. B 19, 215 (1991).

    Article  Google Scholar 

  13. R. G. H. Robertson, T. J. Bowles, G. J. Stephenson, Jr., D. L. Wark, J. F. Wilkerson, and D. A. Knapp, Phys. Rev. Lett. 67, 957 (1991).

    Article  ADS  Google Scholar 

  14. H. Kawakami, S. Kato, T. Ohshima, S. Shibata, K. Ukai, N. Morikawa, N. Nogawa, K. Haga, T. Nagafuchi, M. Shigeta, Y. Fukushima, and T. Taniguchi, Phys. Lett. B 256, 105 (1991).

    Article  ADS  Google Scholar 

  15. E. Holzschuh, M. Fritschi, and W. Kündig, Phys. Lett. B 287, 381 (1992).

    Article  ADS  Google Scholar 

  16. H. C. Sun et al., Chin. J. Nucl. Phys. 15, 261 (1993).

    MathSciNet  Google Scholar 

  17. Ch. Weinheimer, M. Przyrembel, H. Backe, H. Barth, J. Bonn, B. Degen, Th. Edling, H. Fischer, L. Fleischmann, J. U. Grooß, R. Haid, A. Hermanni, G. Kube, P. Leiderer, Th. Loeken, A. Molz, R. B. Moore, A. Osipowicz, E.W. Otten, A. Picard, M. Schrader, and M. Steininger, Phys. Lett. B 300, 210 (1993).

    Article  ADS  Google Scholar 

  18. W. Stoeffl and D. J. Decman, Phys. Rev. Lett. 75, 3237 (1995).

    Article  ADS  Google Scholar 

  19. C. Weinheimer, B. Degen, A. Bleile, J. Bonn, L. Bornschein, O. Kazachenko, A. Kovalík, and E. W. Otten, Phys. Lett. B 460, 219 (1999).

    Article  ADS  Google Scholar 

  20. V. M. Lobashev, V. N. Aseev, A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, O. V. Kazachenko, Yu. E. Kuznetsov, R. P. Ostroumov, L. A. Rivkis, B. E. Stern, N. A. Titov, S. V. Zadorozhny, and Yu. I. Zakharov, Phys. Lett. B 460, 227 (1999).

    Article  ADS  Google Scholar 

  21. J. J. Hernández et al. (Particle Data Group), Phys. Lett. B 239, 1 (1990).

    Google Scholar 

  22. V. M. Lobashev and P. E. Spivak, Nucl. Instrum. Methods Phys. Res., Sect. A 240, 305 (1985).

    Google Scholar 

  23. A. Picard, H. Backe, H. Barth, J. Bonn, B. Degen, Th. Edling, R. Haid, A. Hermanni, P. Leiderer, Th. Loeken, A. Molz, R. B. Moore, A. Osipowicz, E. W. Otten, M. Przyrembel, M. Schrader, M. Steininger, and C. Weinheimer, Nucl. Instrum. Methods Phys. Res., Sect. B 63, 345 (1992).

    Google Scholar 

  24. Ch. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, A. Kovalík, B. Ostrick, E. W. Otten, J. P. Schall, Th. Thümmler, and Ch. Weinheimer, Eur. Phys. J. C 40, 447 (2005).

    Article  ADS  Google Scholar 

  25. V. N. Aseev, A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, N. A. Lihovid, V. M. Lobashev, A. A. Nozik, V. S. Pantuev, V. I. Parfenov, A. K. Skasyrskaya, V. Tkachov, and S. V. Zadorozhny, Phys. At. Nucl. 75, 464 (2012).

    Article  Google Scholar 

  26. K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  27. http://pdg.lbl.gov.

  28. J. Angrik, T. Armbrust, et al., Report No. 7090 (Forschungszentrum Karlsruhe, Karlsruhe, 2004).

  29. K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Hedén, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules (North-Holland, Amsterdam–London, 1969).

    Google Scholar 

  30. A. Fahlman, C. Nordling, and K. Siegbahn, ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy (Almqvist and Wiksell, Uppsala, 1967).

    Google Scholar 

  31. Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Ed. by D. Bliggs and J. T. Grant (IM Publ. and Surface Spectra, Chichester, Manchester, 2003).

    Google Scholar 

  32. D. A. Shirley, R. L. Martin, S. P. Kowalczyk, F. R. McFeely, and L. Ley, Phys. Rev. B 15, 544 (1977).

    Article  ADS  Google Scholar 

  33. P. Weightman, “X-ray-excited Auger and photoelectron spectroscopy,” Rep. Prog. Phys. 45, 753 (1982).

    Article  ADS  Google Scholar 

  34. J. E. Houston, R. L. Park, and G. E. Laramore, Phys. Rev. Lett. 30, 846 (1973).

    Article  ADS  Google Scholar 

  35. T. Mandel, M. Domke, G. Kaindl, C. Laubschat, M. Prietsch, U. Middelmann, and K. Horn, Surf. Sci. 162, 453 (1985).

    Article  ADS  Google Scholar 

  36. G. Kaindl, T.-C. Chiang, D. E. Eastman, and F. J. Himpsel, Phys. Rev. Lett. 45, 1808 (1980).

    Article  ADS  Google Scholar 

  37. V. M. Lobashev, Nucl. Phys. A 719, 153 (2003).

    Article  ADS  Google Scholar 

  38. B. Ostrick, PhD Thesis (Westfälische Wilhelms-Universität Münster, Münster, 2008). https://repositorium.uni-muenster.de/document/miami/606200b4-7e48-49b7-8a5a-87d51948111b/diss_ostrick.pdf.

  39. D. Vénos, O. Dragoun, A. Špalek, and M. Vobecký, Nucl. Instrum. Methods Phys. Res., Sect. A 560, 352 (2006).

    Google Scholar 

  40. A. Kovalík, V. M. Gorozhankin, A. F. Novgorodov, A. Minkova, M. A. Mahmoud, and M. Ryšavý, J. Electron Spectrosc. Relat. Phenom. 58, 49 (1992).

    Article  Google Scholar 

  41. A. Kovalík and V. M. Gorozhankin, J. Phys. G 19, 1921 (1993).

    Article  ADS  Google Scholar 

  42. Table of Isotopes, Ed. by R. B. Firestone and V. S. Shirley, 8th ed. (Wiley, New York, 1996).

    Google Scholar 

  43. A. Kovalík, “Neutrino masses in the sub-eV range,” in Proc. Int. Workshop on Massive Neutrinos in sub-eV Region, Bad Liebenzell,2001.

  44. A. Špalek, Surf. Interface Anal. 15, 739 (1990).

    Article  Google Scholar 

  45. A. Špalek, Nucl. Instrum. Methods Phys. Res., Sect. A 264, 410 (1988).

    Google Scholar 

  46. A. Špalek, Nucl. Instrum. Methods Phys. Res. 198, 399 (1982).

    Article  ADS  Google Scholar 

  47. A. Špalek and O. Dragoun, J. Phys. G 19, 2071 (1993).

    Article  ADS  Google Scholar 

  48. O. Dragoun, A. Špalek, A. Kovalík, M. Ryšavý, J. Frána, V. Brabec, E. A. Yakushev, A. F. Novgorodov, and D. Liljequist, Nucl. Instrum. Methods Phys. Res., Sect. B 194, 112 (2002).

    Google Scholar 

  49. Ch. Briançon, B. Legrand, R. J. Walen, Ts. Vylov, A. Minkova, and A. Inoyatov, Nucl. Instrum. Methods Phys. Res. 221, 547 (1984).

    Article  ADS  Google Scholar 

  50. D. Varga, I. Kádár, Á. Kövér, I. Cserny, G. Mórik, V. Brabec, O. Dragoun, A. Kovalík, and J. Adam, Nucl. Instrum. Methods Phys. Res. 192, 277 (1982).

    Article  ADS  Google Scholar 

  51. V. Brabec, O. Dragoun, N. Dragounová, J. Novák, M. Fišer, A. Kovalík, and M. Ryšavý, Acta Phys. Hung. 65, 183 (1989).

    Google Scholar 

  52. O. Dragoun, M. Fišer, V. Brabec, A. Kovalík, A. Kuklík, and P. Mikušík, Phys. Lett. A 99, 187 (1983).

    Article  ADS  Google Scholar 

  53. M. Fišer, V. Brabec, O. Dragoun, A. Kovalík, J. Frána, and M. Ryšavý, Int. J. Appl. Radiat. Isot. 36, 219 (1985).

    Article  Google Scholar 

  54. M. Fišer, O. Dragoun, V. Brabec, A. Kovalík, and M. Ryšavý, in Technetium in Chemistry and Nuclear Medicine 2, Ed. by M. Nicolini, G. Bandoli, and U. Mazzi (Raven Press, New York, 1986).

    Google Scholar 

  55. M. Fišer, V. Brabec, O. Dragoun, A. Kovalík, M. Ryšavý, and N. Dragounová, Int. J. Appl. Radiat. Isot. 39, 943 (1988).

    Article  Google Scholar 

  56. A. Kovalík, V. M. Gorozhankin, A. F. Novgorodov, A. Minkova, M. A. Mahmoud, and M. Ryšavý, J. Electron Spectrosc. Relat. Phenom. 58, 49 (1992).

    Article  Google Scholar 

  57. D. Vénos, A. Špalek, O. Lebeda, and M. Fišer, Appl. Radiat. Isot. 63, 323 (2005).

    Article  Google Scholar 

  58. D. Vénos, J. Jakůbek, O. Dragoun, and S. Pospíšil, arXiv:0712.3860 [nucl-ex].

  59. D. Vénos, M. Zbořil, J. Kašpar, O. Dragoun, J. Bonn, A. Kovalík, O. Lebeda, N. A. Lebedev, M. Ryšavý, K. Schlösser, A. Špalek, and Ch. Weinheimer, Meas. Tech. 53, 305 (2010).

    Article  Google Scholar 

  60. K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, and B. Lindberg, ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy (Almqvist and Wiksell, Uppsala, 1967).

    Google Scholar 

  61. S. Granroth, W. Olovsson, E. Holmström, R. Knut, M. Gorgoi, S. Svensson, and O. Karis, J. Electron Spectrosc. Relat. Phenom. 183, 88 (2011).

    Article  Google Scholar 

  62. B. Was, A. Kovalík, A. F. Novgorodov, and J. Rak, Nucl. Instrum. Methods Phys. Res., Sect. A 332, 334 (1993).

    Google Scholar 

  63. M. Ryšavý and M. Fišer, Comput. Phys. Commun. 29, 171 (1983).

    Article  ADS  Google Scholar 

  64. A. Kovalík, V. M. Gorozhankin, A. F. Novgorodov, A. Minkova, M. A. Mahmoud, and M. Ryšavý, J. Electron Spectrosc. Relat. Phenom. 58, 49 (1992).

    Article  Google Scholar 

  65. A. Inoyatov, D. V. Filosofov, V. M. Gorozhankin, A. Kovalík, L. L. Perevoshchikov, and Ts. Vylov, J. Electron Spectrosc. Relat. Phenom. 160, 54 (2007).

    Article  Google Scholar 

  66. A. Špalek and O. Dragoun, Czech J. Phys. B 24, 161 (1974).

    Article  ADS  Google Scholar 

  67. A. Kh. Inoyatov, L. L. Perevoshchikov, A. Kovalík, O. Dragoun, and D. V. Filosofov, Eur. Phys. J. A 47, 84 (2011).

    Article  ADS  Google Scholar 

  68. A. Kh. Inoyatov, L. L. Perevoshchikov, A. Kovalík, D. V. Filosofov, Yu. V. Yushkevich, M. Ryšavý, B. Q. Lee, T. Kibédi, A. E. Stuchbery, and V. S. Zhdanov, J. Electron Spectrosc. Relat. Phenom. 197, 64 (2014).

    Article  Google Scholar 

  69. A. Kh. Inoyatov, A. Kovalík, D. V. Filosofov, M. Ryšavý, L. L. Perevoshchikov, Yu. V. Yushkevich, and M. Zbořil, J. Electron Spectrosc. Relat. Phenom. 202, 46 (2015).

    Article  Google Scholar 

  70. A. Kh. Inoyatov, A. Kovalík, D. V. Filosofov, M. Ryšavý, D. Vénos, Yu. V. Yushkevich, L. L. Perevo-shchikov, and V. S. Zhdanov, J. Electron Spectrosc. Relat. Phenom. 207, 38 (2016).

    Article  Google Scholar 

  71. A. Kh. Inoyatov, D. V. Filosofov, L. L. Perevoshchikov, A. Kovalík, V. M. Gorozhankin, and Ts. Vylov, J. Electron Spectrosc. Relat. Phenom. 168, 20 (2008).

    Article  Google Scholar 

  72. A. Kh. Inoyatov, L. L. Perevoshchikov, A. Kovalík, D. V. Filosofov, Y. V. Yushkevich, M. Ryšavý, B. Q. Lee, T. Kibédi, A. E. Stuchbery, and V. S. Zhdanov, Phys. Scr. 90, 025402 (2015).

    Article  ADS  Google Scholar 

  73. A. Kh. Inoyatov, A. Kovalík, L. L. Perevoshchikov, D. V. Filosofov, D. Vénos, B. Q. Lee, J. Ekman, and A. Baimukhanova, J. Phys. B 50, 155001 (2017).

    Article  ADS  Google Scholar 

  74. V. I. Nefedov, X-Ray Photoelectron Spectroscopy of Chemical Compounds. Handbook (Khimiya, Moscow, 1984), p. 32.

    Google Scholar 

  75. A. Špalek, O. Dragoun, A. Kovalík, E. A. Yakushev, M. Ryšavý, J. Frána, V. Brabec, A. F. Novgorodov, I. Cserny, J. Tóth, D. Varga, and L. Kövér, Nucl. Instrum. Methods Phys. Res., Sect. B 196, 357 (2002).

    Google Scholar 

  76. K. D. Sevier, At. Data Nucl. Data Tables 24, 323 (1979).

    Article  ADS  Google Scholar 

  77. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010); http://www.srim.org.

  78. A. Kovalík, E. A. Yakushev, A. F. Novgorodov, V. M. Gorozhankin, and M. Mahmoud, Proc. 51st Int. Conf. on Nuclear Spectroscopy and Nuclear Structure “Features of Nuclear Excitation States and Mechanisms of Nuclear Reactions,“ Sarov, Russia,2001, p. 177.

  79. A. Kovalík, E. A. Yakushev, S. I. Reiman, A. F. Novgorodov, D. V. Filosofov, V. M. Gorozhankin, D. Vaga, L. Kövér, O. Dragoun, and C. Vylov, Proc. 51st Int. Conf. on Nuclear Spectroscopy and Nuclear Structure “Features of Nuclear Excitation States and Mechanisms of Nuclear Reactions,“ Sarov,2001, p. 239.

  80. D. C. Santry, Appl. Radiat. Isot. 64, 1528 (2006).

    Article  Google Scholar 

  81. M. Zbořil, S. Bauer, M. Beck, J. Bonn, O. Dragoun, J. Jakůbek, K. Johnston, A. Kovalík, E. W. Otten, K. Schlösser, M. Slezák, A. Špalek, T. Thümmler, D. Vénos, J. Žemlička, and Ch. Weinheimer, J. Instrum. 8, P03009 (2013). https://doi.org/10.1088/1748-0221/8/03/P03009

    Article  Google Scholar 

  82. G. K. Wertheim, J. Electron Spectrosc. Relat. Phenom. 15, 5 (1979).

    Article  Google Scholar 

  83. K. Hanzawa, J. Phys. Soc. Jpn. 67, 3151 (1998).

    Article  ADS  Google Scholar 

  84. J. M. Lawrence, P. S. Riseborough, and R. D. Parks, Rep. Prog. Phys. 44, 1 (1981).

    Article  ADS  Google Scholar 

  85. I. N. Yakovin, Surf. Sci. 601, 1001 (2007).

    Article  ADS  Google Scholar 

  86. C. S. Fadley, S. B. M. Hagstrom, M. P. Klein, and D. A. Shirley, J. Chem. Phys. 48, 3779 (1968).

    Article  ADS  Google Scholar 

  87. G. K. Wertheim and G. Crecelius, Phys. Rev. Lett. 40, 813 (1978).

    Article  ADS  Google Scholar 

  88. J. Vacík, V. Hnatowicz, U. Köster, J. Červená, V. Havránek, and G. G. Pasold, Nucl. Instrum. Methods Phys. Res., Sect. B 249, 865 (2006).

    Google Scholar 

  89. O. Dragoun, A. Špalek, J. Kašpar, J. Bonn, A. Kovalík, E. W. Otten, D. Vénos, and Ch. Weinheimer, Appl. Radiat. Isot. 69, 672–677 (2011).

    Article  Google Scholar 

  90. O. Dragoun, A. Špalek, J. Kašpar, J. Bonn, A. Kovalík, E. W. Otten, D. Vénos, and Ch. Weinheimer, arXiv: 1003.3758 [nucl-ex].

  91. J. Kašpar, PhD Thesis (Czech Technical University, Prague, 2008). http://inspirehep.net/record/1444432/files/phd-J_Kaspar.pdf.

    Google Scholar 

  92. http://www.nuclitec.de.

  93. M. Arenz et al. (KATRIN Collab.), Eur. Phys. J. C 78, 368 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kovalík.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalík, A., Inoyatov, A.K., Vénos, D. et al. Various Applications of Precision Low-Energy Nuclear Electron Spectrometry in the KATRIN Tritium Neutrino Project. Phys. Part. Nuclei 50, 683–720 (2019). https://doi.org/10.1134/S1063779619060030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779619060030

Navigation