Skip to main content
Log in

Specific Heat of Nuclear Medium Probed by \({K_{S}^{0}}\) Mesons Produced in \(\textrm{Au}+\textrm{Au}\) Collisions at RHIC

  • ELEMENTARY PARTICLES AND FIELDS/Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The energy and centrality dependence of \(K_{S}^{0}\)-meson spectra measured by the STAR Collaboration at RHIC in \(\textrm{Au}+\textrm{Au}\) collisions over a wide range of \(\sqrt{s_{NN}}=7.7{-}200\) GeV was studied in the \(z\)-scaling approach. The scaling function \(\psi(z)\) was constructed and the self-similarity of \(K_{S}^{0}\)-meson production was confirmed. This observation is consistent with an abrupt decrease of the model parameter \(c_{\textrm{AuAu}}\) from the value of 0.16 at \(\sqrt{s}_{NN}=7.7\) and 11.5 GeV to about 0.09 at the top RHIC energy. The scaling parameter is interpreted as a specific heat of the produced medium. The non-trivial dependence of \(c_{\textrm{AuAu}}\) on the collision energy shows that \(K_{S}^{0}\) meson is much more sensitive to properties of nuclear medium than a non-identified negative hadron. The irregularities in the behavior of the specific heat parameter \(c_{\textrm{AuAu}}\) are considered as a possible indication of phase transition in nuclear matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. I. Arsene et al. (BRAHMS Collab.), Nucl. Phys. A 757, 1 (2005).

    Article  ADS  Google Scholar 

  2. B. B. Back et al. (PHOBOS Collab.), Nucl. Phys. A 757, 28 (2005).

    Article  ADS  Google Scholar 

  3. J. Adams et al. (STAR Collab.), Nucl. Phys. A 757, 102 (2005).

    Article  ADS  Google Scholar 

  4. K. Adcox et al. (PHENIX Collab.), Nucl. Phys. A 757, 184 (2005).

    Article  ADS  Google Scholar 

  5. STAR Collab., Studying the Phase Diagram of QCD Matter at RHIC, A STAR White Paper SN0598. https://drupal.star.bnl.gov/STAR/starnotes/public/ sn0598. Accessed June 1, 2014.

  6. PHENIX Collab., The PHENIX Experiment at RHIC, Decadal Plan 2011–2020 (Brookhaven Natl. Labor., 2010).

  7. G. Roland, K. Šafařík, and P. Steinberg, Prog. Part. Nucl. Phys. 77, 70 (2014).

    Article  ADS  Google Scholar 

  8. P. Foka and M. A. Janik, Rev. Math. Phys. 1, 154 (2016).

    Google Scholar 

  9. M. S. Abdallah (STAR Collab.), Phys. Lett. B 827, 137003 (2022).

    Article  Google Scholar 

  10. W. Busza, K. Rajagopal, and W. van der Schee, Ann. Rev. Nucl. Part. Sci. 68, 339 (2018).

    Article  ADS  Google Scholar 

  11. J. Rafelski, Eur. Phys. J. Spec. Top. 229, 1 (2020).

    Article  Google Scholar 

  12. J. Adam (STAR Collab.), Phys. Rev. C 102, 034909 (2020).

    Article  ADS  Google Scholar 

  13. M. M. Aggarwal (STAR Collab.), Phys. Rev. C 83, 024901 (2011).

    Article  ADS  Google Scholar 

  14. G. Agakishiev (STAR Collab.), Phys. Rev. Lett. 108, 072301 (2012).

    Article  ADS  Google Scholar 

  15. C. Adler (STAR Collab.), Phys. Lett. B 595, 143 (2004).

    Article  ADS  Google Scholar 

  16. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, London, 1971).

    Google Scholar 

  17. H. E. Stanley, Rev. Mod. Phys. 71, S358 (1999).

    Article  Google Scholar 

  18. I. Zborovský and M. V. Tokarev, Phys. Rev. D 75, 094008 (2007).

    Article  ADS  Google Scholar 

  19. M. V. Tokarev and I. Zborovský, Int. J. Mod. Phys. A 32, 1750029 (2017).

    Article  ADS  Google Scholar 

  20. M. V. Tokarev, I. Zborovský, A. O. Kechechyan, and T. G. Dedovich, Phys. Part. Nucl. 51, 141 (2020).

    Article  Google Scholar 

  21. I. Zborovský and M. Tokarev, Phys. Part. Nucl. Lett. 18, 302 (2021).

    Article  Google Scholar 

  22. I. Zborovský and M. Tokarev, PoS (ICHEP2020), 575 (2021).

  23. M. V. Tokarev (for the STAR Collab.), Int. J. Mod. Phys. Conf. Ser. 39, 1560103 (2015).

    Article  Google Scholar 

  24. M. Tokarev, A. Kechechyan, and I. Zborovský, Nucl. Phys. A 993, 121646 (2020).

    Article  Google Scholar 

  25. P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986).

    Article  ADS  Google Scholar 

  26. J. Rafelski, Eur. Phys. J. Spec. Top. 155, 139 (2008).

    Article  Google Scholar 

  27. V. S. Stavinsky, Sov. J. Part. Nucl. 10, 949 (1979).

    Google Scholar 

  28. M. Tokarev and I. Zborovský, Nucl. Phys. A 1025, 122492 (2022).

    Article  Google Scholar 

  29. J. Cleymans and K. Redlich, Phys. Rev. C 60, 054908 (1999).

    Article  ADS  Google Scholar 

  30. S. Basu, S. Chatterjee, R. Chatterjee, T. K. Nayak, and B. K. Nandi, Phys. Rev. C 94, 044901 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by RVO61389005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikhail Tokarev or Imrich Zborovský.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokarev, M., Zborovský, I. Specific Heat of Nuclear Medium Probed by \({K_{S}^{0}}\) Mesons Produced in \(\textrm{Au}+\textrm{Au}\) Collisions at RHIC. Phys. Atom. Nuclei 85, 981–987 (2022). https://doi.org/10.1134/S1063778823010568

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823010568

Navigation