Skip to main content
Log in

Search for Ultra-High-Energy Neutrinos with the Telescope Array Surface Detector

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We present an upper limit on the flux of ultra-high-energy down-going neutrinos for E > 1018 eV derived with the nine years of data collected by the Telescope Array surface detector (from November 5, 2008 to October 5, 2017). The method is based on the multivariate analysis technique, so-called Boosted Decision Trees (BDT). Proton-neutrino classifier is built upon 16 observables related to both the properties of the shower front and the lateral distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Tokuno et al. (Telescope Array Collab.), J. Phys.: Conf. Ser. 293, 012035 (2011).

    Google Scholar 

  2. T. Abu-Zayyad et al. (Telescope Array Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A 689, 87 (2013); arXiv:1201.4964 [astro-ph.IM].

  3. H. Tokuno et al. (Telescope Array Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A 676, 54 (2012); arXiv:1201.0002 [astro-ph.IM].

  4. A. Aab et al. (Pierre Auger Collab.), Science (Washington, DC, U. S.) 357 (6537), 1266 (2017); arXiv:1709.07321 [astro-ph.HE].

  5. R. Aloisio, D. Boncioli, A. di Matteo, A. F. Grillo, S. Petrera, and F. Salamida, J. Cosmol. Astropart. Phys. 1510 (10), 006 (2015); arXiv:1505.04020 [astro-ph.HE].

  6. A. van Vliet, J. R. Horandel and R. Alves Batista, arXiv:1707.04511 [astro-ph.HE].

  7. J. Heinze, D. Boncioli, M. Bustamante, and W. Winter, Astrophys. J. 825, 22 (2016); arXiv:1512.05988 [astro-ph.HE].

  8. G. Giacinti, M. Kachelriess, O. Kalashev, A. Neronov, and D. V. Semikoz, Phys. Rev. D 92, 083016 (2015); arXiv:1507.07534 [astro-ph.HE].

  9. E. Waxman and J. N. Bahcall, Phys. Rev. D 59, 023002 (1999); arXiv:hep-ph/9807282.

    Article  ADS  Google Scholar 

  10. E. Waxman and J. N. Bahcall, Phys. Rev. Lett. 78, 2292 (1997); arXiv:astro-ph/9701231.

    Article  ADS  Google Scholar 

  11. R. Engel, D. Seckel, and T. Stanev, Phys. Rev. D 64, 093010 (2001); arXiv:astro-ph/0101216.

    Article  ADS  Google Scholar 

  12. K. Murase and J. F. Beacom, Phys. Rev. D 81, 123001 (2010); arXiv:1003.4959 [astro-ph.HE].

    Article  ADS  Google Scholar 

  13. M. G. Aartsen et al. (IceCube Collab.), Phys. Rev. Lett. 117, 241101 (2016); arXiv:1607.05886 [astro-ph.HE].

  14. R. Aloisio, Nuovo Cim. C 40, 142 (2017); arXiv:1707.06188 [astro-ph.HE].

  15. A. van Vliet, R. Alves Batista, and J. R. Horandel, arXiv:1901.01899 [astro-ph.HE].

  16. F. W. Stecker, C. Done, M. H. Salamon, and P. Sommers, Phys. Rev. Lett. 66, 2697 (1991).

    Article  ADS  Google Scholar 

  17. V. S. Berezinsky, P. Blasi, and V. S. Ptuskin, Astrophys. J. 487, 529 (1997); arXiv:astro-ph/9609048.

    Article  ADS  Google Scholar 

  18. T. A. Thompson, E. Quataert, E. Waxman, and A. Loeb, arXiv: astro-ph/0608699.

  19. R. Budnik, B. Katz, A. MacFadyen, and E. Waxman, Astrophys. J. 673, 928 (2008); arXiv:0705.0041 [astro-ph].

    Article  ADS  Google Scholar 

  20. X. Y. Wang, S. Razzaque, P. Meszaros, and Z. G. Dai, Phys. Rev. D 76, 083009 (2007); arXiv:0705.0027 [astro-ph].

    Article  ADS  Google Scholar 

  21. V. S. Berezinsky and G. T. Zatsepin, Sov. J. Nucl. Phys. 11, 111 (1970).

    Google Scholar 

  22. F. W. Stecker, Astrophys. Space Sci. 20, 47 (1973).

    Article  ADS  Google Scholar 

  23. C. T. Hill and D. N. Schramm, Phys. Lett. B 131, 247 (1983).

    Article  ADS  Google Scholar 

  24. V. S. Berezinsky, Nucl. Phys. B 380, 478 (1992).

    Article  ADS  Google Scholar 

  25. P. Bhattacharjee, C. T. Hill, and D. N. Schramm, Phys. Rev. Lett. 69, 567 (1992).

    Article  ADS  Google Scholar 

  26. J. Alvarez-Muniz and F. Halzen, Phys. Rev. D 63, 037302 (2001); arXiv:astro-ph/0007329.

    Article  ADS  Google Scholar 

  27. G. Gelmini and A. Kusenko, Phys. Rev. Lett. 84, 1378 (2000); arXiv:hep-ph/9908276.

    Article  ADS  Google Scholar 

  28. A. Kusenko and M. Postma, Phys. Rev. Lett. 86, 1430 (2001); arXiv:hep-ph/0007246.

    Article  ADS  Google Scholar 

  29. B. Baret and V. van Elewyck, Rept. Prog. Phys. 74, 046902 (2011).

    Article  ADS  Google Scholar 

  30. L. A. Anchordoqui and T. Montaruli, Ann. Rev. Nucl. Part. Sci. 60, 129 (2010); arXiv:0912.1035 [astro-ph.HE].

  31. A. Kusenko and T. J. Weiler, Phys. Rev. Lett. 88, 161101 (2002); arXiv:hep-ph/0106071.

    Article  ADS  Google Scholar 

  32. V. S. Berezinsky and G. T. Zatsepin, Phys. Lett. B 28, 423 (1969).

    Article  ADS  Google Scholar 

  33. V. S. Berezinsky and A. Y. Smirnov, Astrophys. Space Sci. 32, 461 (1975).

    Article  ADS  Google Scholar 

  34. S. Bottai and S. Giurgola, Astropart. Phys. 18, 539 (2003); arXiv:astro-ph/0205325.

    Article  ADS  Google Scholar 

  35. J. L. Feng, P. Fisher, F. Wilczek, and T. M. Yu, Phys. Rev. Lett. 88, 161102 (2002); arXiv:hep-ph/0105067.

    Article  ADS  Google Scholar 

  36. G. Askaryan, Sov. Phys. JETP 14, 441 (1962).

    Google Scholar 

  37. R. M. Baltrusaitis, G. L. Cassiday, J. W. Elbert, P. R. Gerhardy, E. C. Loh, Y. Mizumoto, P. Sokolsky, and D. Steck, Phys. Rev. D 31, 2192 (1985).

    Article  ADS  Google Scholar 

  38. R. U. Abbasi et al., Astrophys. J. 684, 790 (2008); arXiv:0803.0554 [astro-ph].

    Article  ADS  Google Scholar 

  39. O. Scholten et al., Phys. Rev. Lett. 103, 191301 (2009); arXiv:0910.4745 [astro-ph.HE].

    Article  ADS  Google Scholar 

  40. T. R. Jaeger, R. L. Mutel, and K. G. Gayley, Astropart. Phys. 34, 293 (2010); arXiv:0910.5949 [astroph.IM].

    Article  ADS  Google Scholar 

  41. C. W. James, R. D. Ekers, J. Alvarez-Muniz, J. D. Bray, R. A. McFadden, C. J. Phillips, R. J. Protheroe, and P. Roberts, Phys. Rev. D 81, 042003 (2010); arXiv:0911.3009 [astro-ph.HE].

    Article  ADS  Google Scholar 

  42. J. D. Bray et al., Phys. Rev. D 91, 063002 (2015); arXiv:1502.03313 [astro-ph.HE].

  43. I. Kravchenko et al., Phys. Rev. D 85, 062004 (2012); arXiv:1106. 1164 [astro-ph.HE].

  44. A. Aab et al. (Pierre Auger Collab.), Phys. Rev. D 91, 092008 (2015); arXiv:1504.05397 [astro-ph. HE].

  45. A. Aab et al. (Pierre Auger Collab.), arXiv:1906.07422 [astro-ph.HE].

  46. S. W. Barwick et al. (ARIANNA Collab.), Astropart. Phys. 70, 12 (2015); arXiv:1410.7352 [astroph.HE].

    Article  ADS  Google Scholar 

  47. P. W. Gorham et al. (ANITA Collab.), Phys. Rev. Lett. 103, 051103 (2009); arXiv:0812.2715 [astro-ph].

    Article  ADS  Google Scholar 

  48. P. W. Gorham et al. (ANITA Collab.), Phys. Rev. D 82, 022004 (2010); arXiv:1003.2961 [astroph.HE].

    Article  ADS  Google Scholar 

  49. P. W. Gorham et al. (ANITA Collab.), Phys. Rev. D 98, 022001 (2018); arXiv:1803.02719 [astro-ph.HE].

  50. P. Allison et al. (ARA Collab.), Phys. Rev. D 93, 082003 (2016); arXiv:1507.08991 [astroph.HE].

  51. P. Allison et al. (ARA Collab.), arXiv:1912. 00987 [astro-ph.HE].

  52. A. Albert et al. (ANTARES Collab.), Phys. Rev. D 96, 062001 (2017); arXiv:1705.00497 [astro-ph.HE].

  53. A. Albert et al., arXiv:1808.03531 [astro-ph.HE].

  54. M. G. Aartsen et al. (IceCube Collab.), Science (Washington, DC, U. S.) 342, 1242856 (2013); arXiv:1311.5238 [astro-ph.HE].

  55. M. G. Aartsen et al. (IceCube Collab.), arXiv:1710.01191 [astro-ph.HE].

  56. M. G. Aartsen et al. (IceCube Collab.), Phys. Rev. Lett. 113, 101101 (2014); arXiv:1405.5303 [astroph.HE].

    Article  ADS  Google Scholar 

  57. L. Breiman et al., Classification and Regression Trees, Wadsworth International Group (1984).

  58. R. E. Schapire, Mach. Learn. 5, 197 (1990).

    Google Scholar 

  59. J. Linsley and L. Scarsi, Phys. Rev. 128, 2384 (1962).

    Article  ADS  Google Scholar 

  60. M. Teshima et al., J. Phys. G 12, 1097 (1986).

    Article  ADS  Google Scholar 

  61. M. Takeda et al., Astropart. Phys. 19, 447 (2003); arXiv: astro-ph/0209422.

    Article  ADS  Google Scholar 

  62. D. Heck et al., Report FZKA-6019 (Forschungszentrum Karlsruhe, 1998).

  63. S. Agostinelli et al. (GEANT4 Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

    Google Scholar 

  64. T. Abu-Zayyad et al. (Telescope Array Collab.), Phys. Rev. D 88, 112005 (2013); arXiv:1304.5614 [astro-ph.HE].

    Article  ADS  Google Scholar 

  65. Y. Takahashi et al. (Telescope Array Collab.), AIP Conf. Proc. 1367, 157 (2011).

    Article  ADS  Google Scholar 

  66. S. Ostapchenko, Nucl. Phys. Proc. Suppl. 151, 143 (2006); arXiv: hep-ph/0412332.

    Article  ADS  Google Scholar 

  67. T. T. Bohlen et al., Nucl. Data Sheets 120, 211 (2014).

    Article  ADS  Google Scholar 

  68. A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, CERN-2005-010, SLAC-R-773, INFN-TC-05-11.

  69. W. R. Nelson, H. Hirayama, and D. W. O. Rogers, SLAC-0265 (permanently updated since 1985).

  70. G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber, J. High Energy Phys. 0101, 010 (2001); arXiv:hep-ph/0011363.

  71. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011).

    Article  ADS  Google Scholar 

  72. R. U. Abbasi et al. (Telescope Array Collab.), arXiv:1808.03680 [astro-ph.HE].

  73. A. Cooper-Sarkar and S. Sarkar, J. High Energy Phys. 0801, 075 (2008); arXiv:0710.5303 [hep-ph].

  74. A. M. Hillas, Nucl. Phys. Proc. Suppl. B 52, 29 (1997).

    Article  ADS  Google Scholar 

  75. B. T. Stokes et al., Astropart. Phys. 35, 759 (2012).

    Article  ADS  Google Scholar 

  76. T. Abu-Zayyad et al. (Telescope Array Collab.), arXiv:1403.0644 [astro-ph.IM].

  77. J. Abraham et al. (Pierre Auger Collab.), Phys. Rev. Lett. 100, 211101 (2008); arXiv:0712.1909 [astro-ph].

    Article  ADS  Google Scholar 

  78. T. Abu-Zayyad et al. (Telescope Array Collab.), Astrophys. J. Lett. 768, L1 (2013).

    Article  ADS  Google Scholar 

  79. G. Ros et al., Astropart. Phys. 35, 140 (2011); arXiv:1104.3399 [astro-ph.HE].

    Article  ADS  Google Scholar 

  80. R. U. Abbasi et al. (Telescope Array Collab.), Astropart. Phys. 110, 8 (2019); arXiv:1811.03920 [astro-ph.HE].

  81. R. U. Abbasi et al. (Telescope Array Collab.), arXiv:1904.00300 [astro-ph.HE].

  82. Y. Freund and R. E. Schapire, in Proceedings of the International Conference on Machine Learning ICML,1996, p. 148.

  83. R. Brun and F. Rademakers, in Proceedings of the AIHENP'96 Workshop, Lausanne, Sept. 1996, Nucl. Instrum. Methods Phys. Res., Sect. A 389, 81 (1997). http://root.cern.ch/.

  84. A. Hocker et al., PoS ACAT, 040 (2007); physics/0703039 [PHYSICS].

  85. G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).

    Article  ADS  Google Scholar 

  86. K. G. Murty, Linear Programming (Wiley, New York, 1983).

    MATH  Google Scholar 

  87. R. U. Abbasi et al. (Telescope Array Collab.), Phys. Rev. D 98, 022002 (2018); arXiv:1804.03877 [astro-ph.HE].

  88. P. W. Gorham et al. (ANITA Collab.), Phys. Rev. D 85, 049901(E) (2012); arXiv:1003.2961 [astro-ph.HE].

  89. M. G. Aartsen et al. (IceCube Collab.), Phys. Rev. D 88, 112008 (2013); arXiv:1310.5477 [astroph.HE].

    Article  ADS  Google Scholar 

  90. A. Aab et al. (Pierre Auger Collab.), J. Cosmol. Astropart. Phys. 1704, 009 (2017); arXiv:1612.01517 [astro-ph.HE].

Download references

ACKNOWLEDGMENTS

The Telescope Array experiment is supported by the Japan Society for the Promotion of Science (JSPS) through Grants-in-Aid for Priority Area 431, for Specially Promoted Research JP21000002, for Scientific Research (S) JP19104006, for Specially Promoted Research JP15H05693, for Scientific Research (S) JP15H05741, for Science Research (A) JP18H03705 and for Young Scientists (A) JPH26707011; by the joint research program of the Institute for Cosmic Ray Research (ICRR), The University of Tokyo; by the U.S. National Science Foundation awards PHY-0601915, PHY-1404495, PHY-1404502, and PHY-1607727; by the National Research Foundation of Korea (2016R1A2B4014967, 2016R1A5A1013277, 2017K1A4A3015188, 2017R1A2A1A05071429); IISN project no. 4.4502.13, and Belgian Science Policy under IUAP VII/37 (ULB). The development and application of the multivariate analysis method is supported by the Russian Science Foundation grant no. 17-72-20291 (INR). The foundations of Dr. Ezekiel R. and Edna Wattis Dumke, Willard L. Eccles, and George S. and Dolores Doré Eccles all helped with generous donations. The State of Utah supported the project through its Economic Development Board, and the University of Utah through the Office of the Vice President for Research. The experimental site became available through the cooperation of the Utah School and Institutional Trust Lands Administration (SITLA), U.S. Bureau of Land Management (BLM), and the U.S. Air Force. We appreciate the assistance of the State of Utah and Fillmore offices of the BLM in crafting the Plan of Development for the site. Patrick Shea assisted the collaboration with valuable advice on a variety of topics. The people and the officials of Millard County, Utah have been a source of steadfast and warm support for our work which we greatly appreciate. We are indebted to the Millard County Road Department for their efforts to maintain and clear the roads which get us to our sites. We gratefully acknowledge the contribution from the technical staffs of our home institutions. An allocation of computer time from the Center for High Performance Computing at the University of Utah is gratefully acknowledged. The cluster of the Theoretical Division of INR RAS was used for the numerical part of the work. This work was partially supported by the Collaborative research program of the Institute for Cosmic Ray Research (ICRR), the University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhezher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, R.U., Abe, M., Abu-Zayyad, T. et al. Search for Ultra-High-Energy Neutrinos with the Telescope Array Surface Detector. J. Exp. Theor. Phys. 131, 255–264 (2020). https://doi.org/10.1134/S106377612005012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612005012X

Navigation