Skip to main content
Log in

New Mn(II) and Cu(II) Complexes of Naphtaldimine Schiff Base Ligands: Synthesis, Characterization and Crystal Structures

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two new Schiff base ligands of HLBr and HLCl with the general formula C4H4-OHC6H3C=NCH2CH2X (X = Br, Cl) and their Mn(II) and Cu(II) complexes (1, 2, 3, and 4) are synthesized. Different characterization methods, such as the elemental analysis (CHN), 1H NMR and FT-IR spectroscopy, and the single crystal X-ray diffraction analysis are used to determine the composition, functional groups and crystal structures of the investigated compounds. The titled Schiff base ligands crystallize in the monoclinic system with the space group P21/c. The crystal packing of Schiff bases is stabilized by N-H⋯O and C-H⋯O hydrogen bonds. The Schiff bases are coordinated to Mn(II) and Cu(II) ion centers via two different donor atoms (nitrogen and oxygen) and form bis-chelate complexes M(LX)2 (1–4) in an approximately square planar coordination geometry. Complexes 1, 2, and 4 crystallize in the monoclinic system with the space group P21/c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, and F. Bartl. Curr. Org. Chem., 2009, 13, 124–148.

    Article  CAS  Google Scholar 

  2. M. Wuttig and N. Yamada. Nat. Mater., 2007, 6, 824–832.

    Article  CAS  Google Scholar 

  3. C. O. Yanez, C. D. Andrade, S. Yao, G. Luchita, M. V. Bondar, and K. D. Belfield. ACS App. Mater. Interfaces, 2009, 1, 2219–2229.

    Article  CAS  Google Scholar 

  4. E. Hadjoudis and I. M. Mavridis. Chem. Soc. Rev., 2004, 33, 579–588.

    CAS  PubMed  Google Scholar 

  5. K. Amimoto and T. Kawato. J. Photochem. Photobiol., 2005, 6, 207–226.

    Article  CAS  Google Scholar 

  6. A. Beharry and G. Woolley. Chem. Soc. Rev., 2011, 40, 4422–4437.

    Article  CAS  Google Scholar 

  7. A. Staykov, M. Watanabe, T. Ishihara, and K. Yoshizawa. J. Phys. Chem. C., 2014, 118, 27539–27548.

    Article  CAS  Google Scholar 

  8. S. Dalapati, S. Jana, and N. Guchhait. Spectrochim. Acta A, 2014, 129, 499–508.

    Article  CAS  Google Scholar 

  9. X. Zhang, J. Yin, and J. Yoon. Chem. Rev., 2014, 114, 4918–4959.

    Article  CAS  Google Scholar 

  10. B. Dai, M. Cao, G. Fang, B. Liu, X. Dong, M. Pan, and S. Wang. J. Hazard. Mater., 2012, 219–220, 103–110.

    Article  Google Scholar 

  11. Y. Chen, Y. Liu, X. Zhang, Z. Zhang, L. Liu, D. Fan, L. Ding, and X. Lü. Inorg. Chem. Comm., 2015, 53, 1–3.

    Article  Google Scholar 

  12. X. Wang, J. Yin, L. Shi, G. Zhang, and B. Song. Eur. J. Med. Chem., 2014, 77, 65–74.

    Article  CAS  Google Scholar 

  13. S. D. Khanye, J. Gutb, P. J. Rosenthal, K. Chibale, and G. S. Smith. J. Organomet. Chem., 2011, 696, 3296–3300.

    Article  CAS  Google Scholar 

  14. I. Kraicheva, I. Tsacheva, E. Vodenicharova, E. Tashev, T. Tosheva, A. Kril, M. Topashka-Ancheva, I. Iliev, T. S. Gerasimova, and K. Troev. Bioorg. Med. Chem., 2012, 20, 117–124.

    Article  CAS  Google Scholar 

  15. A. M. Alafeefy, M. A. Bakht, M. A. Ganaie, M. N. Ansarie, N. N. El-Sayed, and A. S. Awaad. Bioorg. Med. Chem. Lett., 2015, 25, 179–183.

    Article  CAS  Google Scholar 

  16. M. Shakir, S. Hanif, M. A. Sherwani, O. Mohammad, and S. I. Al-Resayes. J. Mol. Struct., 2015, 1092, 143–159.

    Article  CAS  Google Scholar 

  17. B. Vivekanand, K. M. Raj, and B. H. M. Mruthyunjayaswamy. J. Mol. Struct., 2015, 1079, 214–224.

    Article  CAS  Google Scholar 

  18. S. Saravanamoorthy and S. Velmathi. Prog. Org. Coat., 2013, 76, 1527–1535.

    Article  CAS  Google Scholar 

  19. A. A. Abdel Aziz. J. Lumin., 2013, 143, 66–669.

    Article  Google Scholar 

  20. N. M. Hosnya, M. A. Hussiena, F. M. Radwana, and N. Nawar. Spectrochim. Acta A, 2014, 132, 121–129.

    Article  Google Scholar 

  21. C. T. Lyons and T. D. P. Stack. Coord. Chem. Rev., 2013, 257, 528–540.

    Article  CAS  Google Scholar 

  22. A. Golcu, M. Tumer, H. Demirelli, and R. A. Wheatley. Inorg. Chim. Acta, 2005, 358, 785–1797.

    Article  Google Scholar 

  23. K. Singh, M. S. Barwa, and P. Tyag. Eur. J. Med. Chem., 2006, 41, 147–153.

    Article  Google Scholar 

  24. V. Tahmasebi, G. Grivani, and G. Bruno. J. Mol. Struct., 2016, 1123, 367–374.

    Article  CAS  Google Scholar 

  25. L. Palatinus and G. Chapuis. J. Appl. Crystallogr., 2007, 40, 786–790.

    Article  CAS  Google Scholar 

  26. V. Petricek, M. Dusek, and L. Palatinus. Z. Kristallogr., 2014, 229, 345.

    CAS  Google Scholar 

  27. Diamond-Crystal and Molecular Structure Visualization. Crystal Impact-K. Brandenburg & H. Putz GbR, Rathausgasse 30, D-53111 Bonn, Gernany, 2005.

  28. K. M. Hutchins, S. Dutta, B. P. Loren, and L. R. MacGillivray. Chem. Mater., 2014, 26, 3042–3044.

    Article  CAS  Google Scholar 

  29. M. Sliwa, S. Létard, I. Malfant, M. Nierlich, P. G. Lacroix, T. Asahi, H. Masuhara, P. Yu, and K. Nakatani. Chem. Mater., 2005, 17, 4727–4735.

    Article  CAS  Google Scholar 

  30. A. Kanaani, D. Ajloo, G. Grivani, A. Ghavami, and M. Vakili. J. Mol. Struct., 2016, 1112, 87–96.

    Article  CAS  Google Scholar 

  31. H. Unver and Z. Hayvali. Spectrochim. Acta A, 2010, 75, 782–788.

    Article  Google Scholar 

  32. C. Senol, Z. Hayvali, H. Dal, and T. Hokelek. J. Mol. Struct., 2011, 997, 53–59.

    Article  CAS  Google Scholar 

  33. A. Bartyzel. J. Coord. Chem., 2013, 66, 4292–4303.

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful to the Damghan and Golestan University for he financial support of this work. The crystallography was supported by project 18-10504S of the Czech Science Foundation using instruments of the ASTRA lab established within the Operation program Prague Competitiveness — project CZ.2.16/3.1.00/24510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Grivani.

Additional information

Additional Information

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Center, CCDC Nos. 1533678, 1533679 for HLBr, HLCl, respectively and CCDC Nos. 1533680, 1533681, 1533682 for 1, 2, and 4 complexes, respectively. The data can be obtained free of charge on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, fax: +44 1223 336 033, e-mail: deposit@ccdc.cam.ac.uk or http:www.ccdc.cam.ac.uk.

Conflict of Interests

The authors declare that they have no conflict of interests.

Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 1, pp. 62–70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, V., Grivani, G., Eigner, V. et al. New Mn(II) and Cu(II) Complexes of Naphtaldimine Schiff Base Ligands: Synthesis, Characterization and Crystal Structures. J Struct Chem 61, 57–65 (2020). https://doi.org/10.1134/S0022476620010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620010060

Keywords

Navigation