Skip to main content
Log in

Nature of Dielectric Relaxation in SrTiO3:Mn Single Crystals

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Dielectric spectra of SrTiO3 and SrTiO3:Mn single crystals have been studied in the frequency range of 10‒3000 cm–1 and in the temperature range of 5–297 K using time-domain terahertz spectroscopy and Fourier-transform infrared spectroscopy. A comparative analysis of the experimental results made it possible to detect a significant broadening of the absorption lines corresponding to the Slater and Last phonon modes, while the parameters of the Axe mode when replacing Ti with Mn (2 at %) stay invariant. This effect is associated with an enhance in structural disorder in the cation subsystem (B-sublattice) of the SrTiO3 crystal. It has been established that doping with Mn ions reduces the antiferrodistortive phase transition temperature by about 20 K, but hardly affects the character of the temperature dependence of the parameters of a ferroelectric soft mode at temperatures of about 60–297 K. It has been found that an additional excitation with the frequency below the frequency of the ferroelectric soft mode should be taken into account for an appropriate model description of the dispersion of the permittivity of SrTiO3:Mn in the terahertz frequency range. The results obtained in this work indicate that dielectric relaxation in the SrTiO3:Mn crystal is due to thermally activated hops of Mn atoms between displaced (noncentral) crystallographic sites; i.e., the mechanism of radiofrequency relaxation in SrTiO3:Mn is hopping rather than polaronic, which is also actively discussed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. S. Barker, Jr. and M. Tinkham, Phys. Rev. 125, 1527 (1962).

    Article  ADS  Google Scholar 

  2. R. A. Cowley, Phys. Rev. Lett. 9, 159 (1962).

    Article  ADS  Google Scholar 

  3. V. L. Ginzburg, Usp. Fiz. Nauk 38, 430 (1949).

    Article  Google Scholar 

  4. J. C. Anderson, Dielectrics (Chapman and Hall, London, 1966).

    Google Scholar 

  5. W. Cochran, Adv. Phys. 9, 387 (1960).

    Article  ADS  Google Scholar 

  6. J. F. Scott, Rev. Mod. Phys. 46, 83 (1974).

    Article  ADS  Google Scholar 

  7. S. Kamba, APL Mater. 9, 020704 (2021).

  8. S. M. Shapiro, J. D. Axe, G. Shirane, and T. Riste, Phys. Rev. B 6, 4332 (1972).

    Article  ADS  Google Scholar 

  9. Yu. I. Yuzyuk, Phys. Solid State 54, 1026 (2012).

    Article  ADS  Google Scholar 

  10. J. Petzelt and D. Nuzhnyy, in Strontium Titanate: Synthesis, Properties and Uses, Ed. by A. Tkach and P. M. Vilarinho (Nova Science, New York, 2019), p. 1.

    Google Scholar 

  11. J. H. Barrett, Phys. Rev. 86, 118 (1952).

    Article  ADS  Google Scholar 

  12. G. Rupprecht and R. O. Bell, Phys. Rev. 125, 1915 (1962).

    Article  ADS  Google Scholar 

  13. O. G. Vendik, E. K. Hollmann, A. B. Kozyrev, and A. M. Prudan, J. Supercond. 12, 325 (1999).

    Article  ADS  Google Scholar 

  14. A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, J. Electroceram 11, 5 (2003).

    Article  Google Scholar 

  15. O. E. Kvyatkovskii, Phys. Solid State 43, 1401 (2001).

    Article  ADS  Google Scholar 

  16. K. A. Muller and H. Burkard, Phys. Rev. 19, 3593 (1979).

    Article  ADS  Google Scholar 

  17. K. A. Muller, W. Berlinger, and E. Tosatti, Zeitschr. Phys. B 84, 277 (1991).

    Google Scholar 

  18. S. E. Rowley, L. J. Spalek, R. P. Smith, M. P. M. Dean, M. Itoh, J. F. Scott, G. G. Lonzarich, and S. S. Saxena, Nat. Phys. 10, 367 (2014).

    Article  Google Scholar 

  19. C. W. Rischau, X. Lin, C. P. Grams, D. Finck, S. Harms, J. Engelmayer, T. Lorenz, Y. Gallais, B. Fauque, J. Hemberger, and K. Behnia, Nat. Phys. 13, 643 (2017).

    Article  Google Scholar 

  20. J. M. Edge, Y. Kedem, U. Aschauer, N. A. Spaldin, and A. V. Balatsky, Phys. Rev. Lett. 115, 247002 (2015).

  21. A. Stucky, G. Scheerer, Z. Ren, D. Jaccard, J. M. Poumirol, C. Barretaeau, E. Giannini, and D. van der Marel, Sci. Rep. 6, 37582 (2016).

    Article  ADS  Google Scholar 

  22. A. Narayan, A. Cano, A. V. Balatsky, and N. A. Spaldin, Nat. Mater. 18, 223 (2019).

    Article  Google Scholar 

  23. A. Tkach, P. M. Vilarinho, and A. L. Kholkin, Acta Mater. 54, 5385 (2006).

    Article  ADS  Google Scholar 

  24. R. A. Maier, E. Cockayne, M. Donohue, G. Cibin, and I. Levin, Chem. Mater. 32, 4651 (2020).

    Article  Google Scholar 

  25. V. V. Laguta, I. V. Kondakova, I. P. Bykov, M. D. Glinchuk, A. Tkach, P. M. Vilarinho, and L. Jastrabik, Phys. Rev. B 76, 054104 (2007).

  26. I. Levin, V. Krayzman, J. C. Woicik, A. Tkach, and P. M. Vilarinho, Appl. Phys. Lett. 96, 052904 (2010).

  27. A. I. Lebedev, I. A. Sluchinskaya, A. Erko, and V. F. Kozlovskii, JETP Lett. 89, 457 (2009).

    Article  ADS  Google Scholar 

  28. A. Tkach, P. M. Vilarinho, A. L. Kholkin, A. Pashkin, S. Veljko, and J. Petzelt, Phys. Rev. B 73, 104113 (2006).

  29. M. Savinov, V. A. Trepakov, P. P. Syrnikov, V. Zelezny, J. Pokorny, A. Dejneka, L. Jastrabik, and P. Galinetto, J. Phys.: Condens. Matter 20, 095221 (2008).

  30. V. V. Lemanov, E. P. Smirnova, A. V. Sotnikov, and M. Weihnacht, Phys. Solid State 46, 1442 (2004).

    Article  ADS  Google Scholar 

  31. M. V. Talanov, A. I. Stash, S. A. Ivanov, E. S. Zhukova, B. P. Gorshunov, B. M. Nekrasov, V. S. Stolyarov, V. I. Kozlov, M. Savinov, and A. A. Bush, J. Phys. Chem. Lett. 13, 11720 (2022).

    Article  Google Scholar 

  32. A. M. Balbashov and S. K. Egorov, J. Cryst. Growth 52, 498 (1981).

    Article  ADS  Google Scholar 

  33. J. Petzelt, T. Ostapchuk, I. Gregora, et al., Phys. Rev. B 64, 184111 (2001).

  34. J. C. Galzerani and R. S. Katiyar, Solid State Commun. 41, 515 (1982).

    Article  ADS  Google Scholar 

  35. P. A. Fleury, J. F. Scott, and J. M. Worlock, Phys. Rev. Lett. 21, 16 (1968).

    Article  ADS  Google Scholar 

  36. G. Shirane and Y. Yamada, Phys. Rev. 177, 858 (1969).

    Article  ADS  Google Scholar 

  37. J. C. Slater, Phys. Rev. 78, 748 (1950).

    Article  ADS  Google Scholar 

  38. H. Vogt and G. Rossbroich, Phys. Rev. B 24, 3086 (1981).

    Article  ADS  Google Scholar 

  39. J. T. Last, Phys. Rev. 105, 1740 (1957).

    Article  ADS  Google Scholar 

  40. J. D. Axe, Phys. Rev. 157, 429 (1957).

    Article  ADS  Google Scholar 

  41. C. Z. Bi, J. Y. Ma, J. Yan, X. Fang, B. R. Zhao, D. Z. Yao, and X. G. Qiu, J. Phys.: Condens. Matter 18, 2553 (2006).

    ADS  Google Scholar 

  42. F. Gervais, J.-L. Servoin, A. Baratoff, J. G. Bednorz, and G. Binnig, Phys. Rev. B 47, 8187 (1993).

    Article  ADS  Google Scholar 

  43. D. A. Crandles, B. Nicholas, C. Dreher, C. C. Homes, A. W. McConnell, B. P. Clayman, W. H. Gong, and J. E. Greedan, Phys. Rev. B 59, 12842 (1999).

    Article  ADS  Google Scholar 

  44. H. Trabelsi, M. Bejar, E. Dhahri, M. A. Valente, M. P. F. Graca, M. Djermouni, and A. Zaou, J. Magn. Magn. Mater. 478, 175 (2019).

    Article  ADS  Google Scholar 

  45. A. M. Glazer, Acta Crystallogr., B 28, 3384 (1972).

    Article  ADS  Google Scholar 

  46. M. V. Talanov and E. G. Trotsenko, Ferroelectrics 612, 36 (2023).

    Article  ADS  Google Scholar 

  47. A. Tkach, P. M. Vilarinho, A. L. Kholkin, I. M. Reaney, J. Pokorny, and J. Petzelt, Chem. Mater. 19, 6471 (2007).

    Article  Google Scholar 

  48. A. Tkach, P. M. Vilarinho, D. Nuzhnyy, and J. Petzelt, Acta Mater. 58, 577 (2010).

    Article  ADS  Google Scholar 

  49. D. Bauerle and W. Rehwald, Solid State Commun. 27, 1343 (1978).

    Article  ADS  Google Scholar 

  50. W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (1994).

    Article  ADS  Google Scholar 

  51. J. Petzelt, G. V. Kozlov, and A. A. Volkov, Ferroelectrics 73, 101 (1987).

    Article  ADS  Google Scholar 

  52. S. Kamba, E. Buixaderas, T. Ostapchuk, and J. Petzelt, Ferroelectrics 268, 163 (2002).

    Article  ADS  Google Scholar 

  53. E. Buixaderas, S. Kamba, and J. Petzelt, Ferroelectrics 308, 131 (2004).

    Article  ADS  Google Scholar 

  54. R. L. Prater, L. L. Chase, and L. A. Boatner, Phys. Rev. B 23, 221 (1981).

    Article  ADS  Google Scholar 

  55. A. Pashkin, V. Zelezny, and J. Petzelt, J. Phys.: Condens. Matter 17, L265 (2005).

    ADS  Google Scholar 

  56. O. Hanske-Petitpierre, Y. Yacoby, J. Mustre de Leon, E. A. Stern, and J. J. Rehr, Phys. Rev. B 44, 6700 (1991).

    Article  ADS  Google Scholar 

  57. J. J. van der Klink and F. Borsa, Phys. Rev. B 30, 52 (1984).

    Article  ADS  Google Scholar 

  58. H. Vogt, J. Phys.: Condens. Matter 7, 5913 (1995).

    ADS  Google Scholar 

  59. A. S. Barker, Jr., Phys. Rev. B 12, 4071 (1975).

    Article  ADS  Google Scholar 

  60. S. A. Prosandeev, V. A. Trepakov, M. E. Savinov, and S. E. Kapphan, J. Phys.: Condens. Matter 13, 719 (2001).

    ADS  Google Scholar 

  61. W. Kleemann, J. Dec, Y. G. Wang, P. Lehnen, and S. A. Prosandeev, J. Phys. Chem. Solids 61, 167 (2000).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.A. Ivanov, A.I. Stach, and J. Petzelt for stimulating discussions of the results.

Funding

This work was supported by the Russian Science Foundation (project no. 21-12-00358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Talanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talanov, M.V., Zhukova, E.S., Nekrasov, B.M. et al. Nature of Dielectric Relaxation in SrTiO3:Mn Single Crystals. Jetp Lett. 118, 684–692 (2023). https://doi.org/10.1134/S0021364023603111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023603111

Navigation