Skip to main content
Log in

Systematic Trends of Transformation Temperatures and Crystal Structure of Ni–Mn–Ga–Fe–Cu Alloys

  • ICFSMA 2019
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Here we report a systematic research on effects of Fe and Cu upon properties relevant for the magnetic shape memory effect of Ni–Mn–Ga ferromagnetic shape memory alloys. Fe and Cu were identified as elements with potential synergism to increase the martensite transformation temperature of Ni–Mn–Ga magnetic shape memory (MSM) alloys. Eighteen Ni–Mn–Ga–Fe–Cu alloys with different systematic trends in substituting the ternary elements with Cu and Fe have been investigated. We found a method to describe the effectiveness of Ni, Mn, and Cu upon raising the martensitic transformation temperature, lowering the saturation magnetization, and varying the Curie temperature. We find the martensite transformation temperature most influenced by the Ni content, followed by Mn, with a smaller effect of Cu. The saturation magnetization decreases with similar coefficients for Mn and Cu alloying. The Curie temperature monotonously decreases with Mn, but not Cu. The 10M martensite structure is stable for the composition Ni46.5Mn25+XGa25−XYFe3.5CuY with X and Y range of 0–5.7, and 0.8–3.0. Used in combination with the total e/a, the elemental e/a-ratio gives some insight into the complex behavior of quinary MSM alloys and is a useful method of analyzing MSM alloys for improved functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ullakko K (1996) Magnetically controlled shape memory alloys: a new class of actuator materials. J Mater Eng Perform 5(3):405–409

    Article  CAS  Google Scholar 

  2. Likhachev A, Sozinov A, Ullakko K (2006) Modeling the strain response, magneto-mechanical cycling under the external stress, work output and energy losses in Ni–Mn–Ga. Mech Mater 38(5–6):551–563

    Article  Google Scholar 

  3. Aaltio I, Heczko O, Söderberg O, Hannula S (2009) Magnetically controlled shape memory alloys, smart materials. CRC-Press, Boca Raton, pp 20–1e20

    Google Scholar 

  4. Murray S, Marioni M, Kukla A, Robinson J, O’Handley R, Allen S (2000) Large field induced strain in single crystalline Ni–Mn–Ga ferromagnetic shape memory alloy. J Appl Phys 87(9):5774–5776

    Article  CAS  Google Scholar 

  5. Smith AR, Tellinen J, Ullakko K (2014) Rapid actuation and response of Ni–Mn–Ga to magnetic-field-induced stress. Acta Mater 80:373–379

    Article  CAS  Google Scholar 

  6. Kucza NJ, Patrick CL, Dunand DC, Müllner P (2015) Magnetic-field-induced bending and straining of Ni–Mn–Ga single crystal beams with high aspect ratios. Acta Mater 95:284–290

    Article  CAS  Google Scholar 

  7. Ullakko K, Wendell L, Smith A, Müllner P, Hampikian G (2012) A magnetic shape memory micropump: contact-free, and compatible with PCR and human DNA profiling. Smart Mater Struct 21(11):115020

    Article  CAS  Google Scholar 

  8. Barker S, Rhoads E, Lindquist P, Vreugdenhil M, Müllner P (2016) Magnetic shape memory micropump for submicroliter intracranial drug delivery in rats. J Med Dev 10(4):126–232

    Google Scholar 

  9. Aaltio I, Lahelin M, Söderberg O, Heczko O, Löfgren B, Ge Y, Seppälä J, Hannula S-P (2008) Temperature dependence of the damping properties of Ni–Mn–Ga alloys. Mater Sci Eng A 481:314–317

    Article  CAS  Google Scholar 

  10. Nilsén F, Aaltio I, Hannula S-P (2018) Comparison of magnetic field controlled damping properties of single crystal Ni-Mn-Ga and Ni-Mn-Ga polymer hybrid composite structures. Compos Sci Technol 160:138–144

    Article  CAS  Google Scholar 

  11. Feuchtwanger J, Richard ML, Tang YJ, Berkowitz AE, O’Handley RC, Allen SM (2005) Large energy absorption in Ni–Mn–Ga/polymer composites. J Appl Phys 97(10):10M319

    Article  CAS  Google Scholar 

  12. Heczko O, Kopecký V, Sozinov A, Straka L (2013) Magnetic shape memory effect at 1.7K. Appl Phys Lett 103(7):072405

    Article  CAS  Google Scholar 

  13. Noda Y, Shapiro S, Shirane G, Yamada Y, Tanner L (1990) Martensitic transformation of a Ni-Al alloyi Experimental results and approximate structure of the seven-layered phase. Phys Rev B 42(16):10397

    Article  CAS  Google Scholar 

  14. Murray S, Marioni M, Allen S, O’handley R, Lograsso TA (2000) 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl Phys Lett 77(6):886–888

    Article  CAS  Google Scholar 

  15. Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl Phys Lett 80(10):1746–1748

    Article  CAS  Google Scholar 

  16. Jiang C, Liang T, Xu H, Zhang M, Wu G (2002) Superhigh strains by variant reorientation in the nonmodulated ferromagnetic NiMnGa alloys. Appl Phys Lett 81(15):2818–2820

    Article  CAS  Google Scholar 

  17. Söderberg O, Straka L, Novák V, Heczko O, Hannula S-P, Lindroos V (2004) Tensile/compressive behaviour of non-layered tetragonal Ni52. 8Mn25. 7Ga21. 5 alloy. Mater Sci Eng A 386(1–2):27–33

    Article  CAS  Google Scholar 

  18. Straka L, Hänninen H, Soroka A, Sozinov A (2011) Ni-Mn-Ga single crystals with very low twinning stress. J Phys 12:012079

    Google Scholar 

  19. Pérez-Checa A, Musiienko D, Saren A, Soroka A, Feuchtwanger J, Sozinov A, Barandiaran J, Ullakko K, Chernenko V (2019) Study of the critical parameters for magnetic field-induced strain in high temperature Ni-Mn-Ga-Co-Cu-Fe single crystals. Scr Mater 158:16–19

    Article  CAS  Google Scholar 

  20. Pagounis E, Chulist R, Szczerba M, Laufenberg M (2014) High-temperature magnetic shape memory actuation in a Ni–Mn–Ga single crystal. Scr Mater 83:29–32

    Article  CAS  Google Scholar 

  21. Sozinov A (2009) Low twinning stress Ni2Mn(1+X)Ga(1-X) alloys. ICFSMA, Bilbao

    Google Scholar 

  22. Heczko O, Straka L (2004) Compositional dependence of structure, magnetization and magnetic anisotropy in Ni–Mn–Ga magnetic shape memory alloys. J Magn Magn Mater 272:2045–2046

    Article  CAS  Google Scholar 

  23. Chernenko VA (1999) Compositional instability of β-phase in Ni-Mn-Ga alloys. Scr Mater 40(5):523–527

    Article  CAS  Google Scholar 

  24. Jin X, Marioni M, Bono D, Allen S, O’handley R, Hsu T (2002) Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration. J Appl Phys 91(10):8222–8224

    Article  CAS  Google Scholar 

  25. Pons J, Chernenko V, Santamarta R, Cesari E (2000) Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Mater 48(12):3027–3038

    Article  CAS  Google Scholar 

  26. Chernenko VA, Seguí C, Cesari E, Pons J, Kokorin VV (1998) Sequence of martensitic transformations in Ni-Mn-Ga alloys. Phys Rev B 57(5):2659–2662

    Article  CAS  Google Scholar 

  27. Soto-Parra D, Moya X, Mañosa L, Planes A, Flores-Zúñiga H, Alvarado-Hernández F, Ochoa-Gamboa R, Matutes-Aquino J, Ríos-Jara D (2010) Fe and Co selective substitution in Ni2MnGa: Effect of magnetism on relative phase stability. Philos Mag 90(20):2771–2792

    Article  CAS  Google Scholar 

  28. Soto D, Hernández FA, Flores-Zúñiga H, Moya X, Manosa L, Planes A, Aksoy S, Acet M, Krenke T (2008) Phase diagram of Fe-doped Ni-Mn-Ga ferromagnetic shape-memory alloys. Phys Rev B 77(18):184103

    Article  CAS  Google Scholar 

  29. Glavatskyy I, Glavatska N, Söderberg O, Hannula S-P, Hoffmann J-U (2006) Transformation temperatures and magnetoplasticity of Ni–Mn–Ga alloyed with Si. In, Co or Fe, Scr Mater 54(11):1891–1895

    Article  CAS  Google Scholar 

  30. Fayzullin R, Buchelnikov VD, Taskaev S, Drobosyuk M, Khovaylo VV (2013) Experimental Study of Magnetocaloric Effect in Ni-Fe-Mn-Ga and Ni-Co-Mn-Ga Heusler Alloys. Mater Sci Forum 738:456–460

    Article  CAS  Google Scholar 

  31. Khovailo V, Chernenko V, Cherechukin A, Takagi T, Abe T (2004) An efficient control of Curie temperature TC in Ni–Mn–Ga alloys. J Magn Magn Mater 272:2067–2068

    Article  CAS  Google Scholar 

  32. Yu S, Yan S, Kang S, Tang X, Qian J, Chen J, Wu G (2011) Magnetic field-induced martensite–austenite transformation in Fe-substituted NiMnGa ribbons. Scr Mater 65(1):9–12

    Article  CAS  Google Scholar 

  33. Liu Z, Zhang M, Wang W, Wang W, Chen J, Wu G, Meng F, Liu H, Liu B, Qu J (2002) Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa. J Appl Phys 92(9):5006–5010

    Article  CAS  Google Scholar 

  34. Guldbakke J, Chmielus M, Rolfs K, Schneider R, Müllner P, Raatz A (2010) Magnetic, mechanical and fatigue properties of a Ni45. 4Mn29. 1Ga21. 6Fe3. 9 single crystal. Scr Mater 62(11):875–878

    Article  CAS  Google Scholar 

  35. Barabash RI, Barabash OM, Popov D, Shen G, Park C, Yang W (2015) Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu. Acta Mater 87:344–349

    Article  CAS  Google Scholar 

  36. Koho K, Söderberg O, Lanska N, Ge Y, Liu X, Straka L, Vimpari J, Heczko O, Lindroos V (2004) Effect of the chemical composition to martensitic transformation in Ni–Mn–Ga–Fe alloys. Mater Sci Eng A 378(1–2):384–388

    Article  CAS  Google Scholar 

  37. Guo S, Zhang Y, Quan B, Li J, Qi Y, Wang X (2005) The effect of doped elements on the martensitic transformation in Ni–Mn–Ga magnetic shape memory alloy. Smart Mater Struct 14(5):S236

    Article  CAS  Google Scholar 

  38. Perez-Checa A, Feuchtwanger J, Musiienko D, Sozinov A, Barandiaran JM, Ullakko K, Chernenko VA (2017) High temperature Ni45Co5Mn25(-) xFexGa20Cu5 ferromagnetic shape memory alloys. Scr Mater 134:119–122

    Article  CAS  Google Scholar 

  39. Pérez-Checa A, Feuchtwanger J, Musiienko D, Sozinov A, Barandiaran JM, Ullakko K, Chernenko VA (2017) High temperature Ni45Co5Mn25−xFexGa20Cu5 ferromagnetic shape memory alloys. Scr Mater 134:119–122

    Article  CAS  Google Scholar 

  40. Perez-Checa A, Feuchtwanger J, Barandiaran J, Sozinov A, Ullakko K, Chernenko V (2018) Ni-Mn-Ga-(Co, Fe, Cu) high temperature ferromagnetic shape memory alloys: effect of Mn and Ga replacement by Cu. Scr Mater 154:131–133

    Article  CAS  Google Scholar 

  41. Roy S, Blackburn E, Valvidares S, Fitzsimmons M, Vogel SC, Khan M, Dubenko I, Stadler S, Ali N, Sinha S (2009) Delocalization and hybridization enhance the magnetocaloric effect in Cu-doped Ni 2 MnGa. Phys Rev B 79(23):235127

    Article  CAS  Google Scholar 

  42. Nicholson DM, Odbadrakh K, Shassere B, Rios O, Hodges J, Ludtka GM, Porter WD, Sefat A, Rusanu A, Brown G (2014) Modeling and characterization of the magnetocaloric effect in Ni2MnGa materials. Int J Refrig 37:289–296

    Article  CAS  Google Scholar 

  43. Zelený M, Sozinov A, Straka L, Björkman T, Nieminen RM (2014) First-principles study of Co-and Cu-doped Ni 2 MnGa along the tetragonal deformation path. Phys Rev B 89(18):184103

    Article  CAS  Google Scholar 

  44. Zeleny M, Sozinov A, Bjorkmand T, Straka L, Nieminen RM (2015) Ab initio study of properties of Co- and Cu- doped Ni-Mn-Ga alloys. Mater Today 2:601–604

    Google Scholar 

  45. Li Y, Wang J, Jiang C (2011) Study of Ni–Mn–Ga–Cu as single-phase wide-hysteresis shape memory alloys. Mater Sci Eng A 528(22–23):6907–6911

    Article  CAS  Google Scholar 

  46. Tan C, Dong G, Gao L, Sui J, Gao Z, Cai W (2012) Microstructure, martensitic transformation and mechanical properties of Ni50Mn30Ga20−xCux ferromagnetic shape memory alloys. J Alloys Compd 538:1–4

    Article  CAS  Google Scholar 

  47. Aaltio I, Söderberg O, Friman M, Glavatskyy I, Ge Y, Glavatska N, Hannula S (2009) Determining the liquidus and ordering temperatures of the ternary NiMn-Ga and quaternary Ni-Mn-Ga-Fe/Cu alloys. EDP Sciences, European Symposium on Martensitic Transformations, p 04001

  48. Rameš M, Heczko O, Sozinov A, Ullakko K, Straka L (2018) Magnetic properties of Ni-Mn-Ga-Co-Cu tetragonal martensites exhibiting magnetic shape memory effect. Scr Mater 142:61–65

    Article  CAS  Google Scholar 

  49. Sozinov A, Lanska N, Soroka A, Zou W (2013) 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Appl Phys Lett 102(2):021902

    Article  CAS  Google Scholar 

  50. Glavatskyy I, Glavatska N, Dobrinsky A, Hoffmann JU, Söderberg O, Hannula SP (2007) Crystal structure and high-temperature magnetoplasticity in the new Ni–Mn–Ga–Cu magnetic shape memory alloys. Scri Mater 56(7):565–568

    Article  CAS  Google Scholar 

  51. Fabbrici S, Porcari G, Cugini F, Solzi M, Kamarad J, Arnold Z, Cabassi R, Albertini F (2014) Co and In doped Ni-Mn-Ga magnetic shape memory alloys: a thorough structural, magnetic and magnetocaloric study. Entropy 16(4):2204–2222

    Article  CAS  Google Scholar 

  52. Chatterjee S, Giri S, De S, Majumdar S (2010) Giant magneto-caloric effect near room temperature in Ni–Mn–Sn–Ga alloys. J Alloys Compd 503(2):273–276

    Article  CAS  Google Scholar 

  53. Nicholson DM, Odbadrakh K, Rusanu A, Eisenbach M, Brown G, Evans I (2011) Boyd Mccutchen, First principles approach to the magneto caloric effect: application toNi2MnGa. J Appl Phys 109(7):07A942

    Article  CAS  Google Scholar 

  54. Nilsén F, Aaltio I, Ge Y, Lindroos T, Hannula S-P (2015) Characterization of gas atomized Ni-Mn-Ga powders. Mater Today 2:S879–S882

    Google Scholar 

  55. Chernenko V, Cesari E, Kokorin V, Vitenko I (1995) The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system. Scr Metall Mater 33(8):1239–1244

    Article  CAS  Google Scholar 

  56. Santamarta R, Muntasell J, Font J, Cesari E (2015) Thermal stability and microstructure of Ni–Mn–Ga–Cu high temperature shape memory alloys. J Alloys Compd 648:903–911

    Article  CAS  Google Scholar 

  57. Lázpita P, Barandiarán J, Gutiérrez J, Feuchtwanger J, Chernenko V, Richard M (2011) Magnetic moment and chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys. New J Phys 13(3):033039

    Article  CAS  Google Scholar 

  58. Enkovaara J, Heczko O, Ayuela A, Nieminen R (2003) Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni2MnGa. Phys Rev B 67(21):1–4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of Czech Science Foundation (grant No. 16-00043S). We also acknowledge the support of Operational Program Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760 and MATFUN-CZ.02.1.01/0.0/0.0/15_003/0000487). Initial compositional EDS measurements were conducted by Ladislav Klimša, and casting of some alloys was performed by Martin Dušák at FZU. Experiments were performed in MGML (https://mgml.eu), which is supported within the program of Czech Research Infrastructures (project no. LM2018096). PM acknowledges partial financial support through the National Science Foundation project DMR-1710640.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Armstrong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ICFSMA 2019 Credit Line: This article is an invited submission to Shape Memory and Superelasticity selected from presentations at the International Conference on Ferromagnetic Shape Memory Alloys (ICFSMA) held June 2–7, 2019 in Prague, Czech Republic, and has been expanded from the original presentation. (Gray header bar: ICFSMA 2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, A., Nilsén, F., Rameš, M. et al. Systematic Trends of Transformation Temperatures and Crystal Structure of Ni–Mn–Ga–Fe–Cu Alloys. Shap. Mem. Superelasticity 6, 97–106 (2020). https://doi.org/10.1007/s40830-020-00273-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-020-00273-3

Navigation