Skip to main content
Log in

Neutron Diffraction Study of Residual Stresses in a W–Ni–Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Residual stresses were studied in tungsten heavy alloy bars produced by powder metallurgy and deformed by rotary swaging at room temperature (RT) and at 900 °C. Neutron diffraction technique was used to scan the residual stresses across the bars. Both tungsten particles and NiCo2W solid solution matrix were analysed. Maximum axial stresses of ~ 300 MPa and ~ 200 MPa were observed for the tungsten phase at the centre in the RT and in the high-temperature deformed samples, respectively. Compressive residual axial stresses were found close to the sample surface, showing that rotary swaging is a suitable deformation method for tungsten heavy alloys to provide an appropriate surface modification for its use in metallic parts undergoing, e.g., fatigue. Residual stresses developed in the NiCo2W-phase are larger than those found in the tungsten particles although with a secondary role in the overall equilibrium conditions due to its lower strength and smaller volume fraction. Total stresses for each phase were separated into macro- and microstresses. Macrostresses can be mainly influenced by the incompatibility of the elliptical cross-section of the sintered sample with the head of the rotary machine while microstresses are mainly developed by the elastic mismatch between the constituent phases.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Pappu, C. Kennedy, L.E. Murr, L.S. Magness, D. Kapoor, Mater. Sci. Eng. A 262, 115 (1999)

    Article  Google Scholar 

  2. X. Gong, J. Fan, F. Ding, Mater. Sci. Eng. A 646, 315 (2015)

    Article  CAS  Google Scholar 

  3. E. Fortuna, W. Zielinski, K. Sikorski, K.J. Kurzydlowski, Mater. Chem. Phys. 81, 469 (2003)

    Article  CAS  Google Scholar 

  4. U. Ravi Kiran, A. Panchal, M. Sankaranarayana, G.N. Rao, T.K. Nandy, Mater. Sci. Eng. A 640, 82 (2015)

    Article  CAS  Google Scholar 

  5. W. Guo, J. Liu, J. Yang, S. Li, Mater. Sci. Eng. A 528, 6248 (2011)

    Article  CAS  Google Scholar 

  6. D.K. Kim, S. Lee, W.H. Baek, Mater. Sci. Eng. A 249, 197 (1998)

    Article  Google Scholar 

  7. N. Durlu, N.K. Caliskan, S. Bor, Int. J. Refract. Met. 42, 126 (2014)

    Article  CAS  Google Scholar 

  8. Z.S. Levin, A. Srivastava, D.C. Foley, K.T. Hartwig, Mater. Sci. Eng. A 734, 244 (2018)

    Article  CAS  Google Scholar 

  9. Y.C. Wu, Q.Q. Hou, L.M. Luo, X. Zan, X.Y. Zhu, P. Li, Q. Xu, J.G. Cheng, G.N. Luo, J.L. Chen, J. Alloy. Compd. 779, 926 (2019)

    Article  CAS  Google Scholar 

  10. X. Gong, J.L. Fan, F. Ding, M. Song, B.Y. Huang, J.M. Tian, Mater. Sci. Eng. A 528, 3646 (2011)

    Article  Google Scholar 

  11. Y. Yu, W. Zhang, Y. Chen, E. Wang, Int. J. Refract. Met. 44, 103 (2014)

    Article  CAS  Google Scholar 

  12. U. Ravi Kiran, S. Venkat, B. Rishikesh, V.K. Iyer, M. Sankaranarayana, T.K. Nandy, Mater. Sci. Eng. A 582, 389 (2013)

    Article  CAS  Google Scholar 

  13. M.T. Hutchings, P.J. Withers, T.M. Holden, T. Lorentzen, Introduction to the Characterization of Residual Stress by Neutron Diffraction (Taylor & Francis, Boca Raton, 2005)

    Book  Google Scholar 

  14. P.J. Withers, H.K.D.H. Bhadeshia, Mater. Sci. Tech-Lond. 17, 355 (2001)

    Article  CAS  Google Scholar 

  15. P.J. Withers, Rep. Prog. Phys. 70, 2211 (2007)

    Article  Google Scholar 

  16. R. Kocich, L. Kunčická, D. Dohnalík, A. Macháčková, M. Šofer, Int. J. Refract. Met. 61, 264 (2016)

    Article  CAS  Google Scholar 

  17. L. Kunčická, R. Kocich, C. Hervoches, A. Macháčková, Mater. Sci. Eng. A 704, 25 (2017)

    Article  Google Scholar 

  18. W.H. Baek, M.H. Hong, E.P. Kim, J.W. Noh, S. Lee, H.S. Song, S.H. Lee, Solid State Phenom. 118, 35 (2006)

    Article  CAS  Google Scholar 

  19. P. Strunz, R. Kocich, D. Canelo-Yubero, A. Macháčková, P. Beran, L. Krátká, Materials 13, 2869 (2020)

    Article  CAS  Google Scholar 

  20. B. Clausen, M.A.M. Bourke, D.W. Brown, E. Üstündag, Mater. Sci. Eng. A 421, 9 (2006)

    Article  Google Scholar 

  21. A. Saigal, G.G. Leisk, S.T. Misture, C.R. Hubbard, Scripta Mater. 34, 1309 (1996)

    Article  CAS  Google Scholar 

  22. P. Rangaswamy, I.J. Beyerlein, M.A.M. Bourke, M.B. Prime, A.K. Saigal, T.O. Williams, Philos. Mag. 83, 2267 (2003)

    Article  CAS  Google Scholar 

  23. D. Dragoi, E. Üstündag, B. Clausen, M.A.M. Bourke, Scripta Mater. 45, 245 (2001)

    Article  CAS  Google Scholar 

  24. R. Coppola, C. Ohms, J. Reiser, M. Rieth, R.C. Wimpory, Nucl. Mater. Energy 34, 37 (2015)

    Article  Google Scholar 

  25. R. Coppola, F. Crescenzi, W. Gan, M. Hofmann, M. Li, E. Visca, J.H. You, Fusion Eng. Des. 146, 701 (2019)

    CAS  Google Scholar 

  26. D. Easton, J. Wood, S. Rahimi, A. Galloway, Y. Zhang, C. Hardie, IEEE T. Plasma Sci. 44, 1625 (2016)

    Article  CAS  Google Scholar 

  27. P. Strunz, L. Kunčická, P. Beran, R. Kocich, C. Hervoches, Materials 13, 208 (2020)

    Article  CAS  Google Scholar 

  28. L. Kunčická, R. Kocich, K. Dvořák, A. Macháčková, Mater. Sci. Eng. A 742, 743 (2019)

    Article  Google Scholar 

  29. P. Mikula, Materials Structure 13, 51 (2006)

    CAS  Google Scholar 

  30. C.H. Hervoches , P. Mikula , M. Vrána, Recent instrumentation upgrades on the residual strain/stress diffractometer at NPI-Řež, in Proc. 53rd International Scientific Conference on Experimental Stress Analysis(EAN 2015), Cesky Krumlov, 1–4 June, 2015 (Czech Society for Mechanics, Prague, 2015), pp. 119–120.

  31. C. Randau, U. Garbe, H.G. Brokmeier, J. Appl. Crystallogr. 44, 641 (2011)

    Article  CAS  Google Scholar 

  32. W. Reimers, in Introduction to diffraction methods for internal stress analysis, in Neutrons and synchrotron radiation in engineering materials science. ed. by W. Reimers, A.R. Pyzalla, A. Schreyer, H. Clemens (Wiley-VCH, Weinheim, Chichester, 2008), pp. 115–135

  33. A. Lodini, Calculation of residual stress from measured strain, in Analysis of residual stress by diffraction using neutron and synchrotron radiation. ed. by M.E. Fitzpatrick, A. Lodini (Taylor & Francis, London, 2003), pp. 47–59

    Chapter  Google Scholar 

  34. H. Wern, R. Johannes, H. Walz, Phys. Status Solidi B 206, 545 (1998)

    Article  CAS  Google Scholar 

  35. E. Kröner, Z. Phys. A 151, 504 (1958)

    Article  Google Scholar 

  36. P. Chowdhury, H. Sehitoglu, H.J. Maier, R. Rateick, Int. J. Plasticity 79, 237 (2016)

    Article  CAS  Google Scholar 

  37. M.L. Martinez-Perez, F.J. Mompean, J. Ruiz-Hervias, C.R. Borlado, J.M. Atienza, M. Garcia-Hernandez, M. Elices, J. Gil-Sevillano, R.L. Peng, T. Buslaps, Acta. Mater. 52, 5303 (2004)

    Article  CAS  Google Scholar 

  38. P. Fernández, G. Bruno, G. González-Doncel, Compos. Sci. Technol. 66, 1738 (2006)

    Article  Google Scholar 

  39. I.C. Noyan, Metall. Trans. A 14, 1907 (1983)

    Article  Google Scholar 

  40. M.R. Bache, J. O’Hanlon, P.J. Withers, D.J. Child, M.C. Hardy, Metals 6, 54 (2016)

    Article  Google Scholar 

  41. J. Zottis, C.A.T. Soares Diehl, A.D.S. Rocha, J. Mater. Res. Technol. 7, 469 (2018)

    Article  CAS  Google Scholar 

  42. S. Sen, B. Aksakal, A. Ozel, Int. J. Mech. Sci. 42, 2013 (2000)

    Article  Google Scholar 

  43. P.J. Withers, W.M. Stobbs, O.B. Pedersen, Acta. Metall. 37, 3061 (1989)

    Article  CAS  Google Scholar 

  44. Y.F. Gu, C. Cui, H. Harada, T. Fukuda, D. Ping, A. Mitsuhashi, K. Kato, T. Kobayashi, J. Fujioka, Development of Ni-Co base alloys for high-temperature disk applications. in Proceedings of the International Symposium on Superalloys, (2008), pp. 53–61

  45. K. Wang, B. Chang, Y. Lei, H. Fu, Y. Lin, Metals 7, 551 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

DC-Y, RK, CH, LK, and LK acknowledge the support by the Czech Science Foundation (Project No. 19-15479S). The authors also acknowledge CANAM infrastructure of the NPI CAS Řež supported through the Ministry of Education, Youth and Sports Project No. LM2015056 as well as the infrastructure Reactors LVR-15 and LR-0 supported by Project LM2018120 of the Ministry of Education, Youth and Sports of the Czech Republic. PS acknowledges the Project ESS participation of the Czech Republic (CZ.02.1.01/0.0/0.0/16_013/0001794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Canelo-Yubero.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canelo-Yubero, D., Kocich, R., Hervoches, C. et al. Neutron Diffraction Study of Residual Stresses in a W–Ni–Co Heavy Alloy Processed by Rotary Swaging at Room and High Temperatures. Met. Mater. Int. 28, 919–930 (2022). https://doi.org/10.1007/s12540-020-00963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00963-8

Keywords

Navigation