Skip to main content
Log in

Synthesis of Cu–Ti thin film multilayers on silicon substrates

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Metal-oxide-based sensors (MOS) can be used for several technological applications in microelectronics, due to their low cost and sensitive capabilities to different chemical species. On the perspective to develop CuO–TiO2 MOS, our goal was to obtain a homogeneous intermixing of Cu and Ti in the bulk structure of the detectors, exploring the most promising combination between such elements and avoiding the presence of Cu–Ti–O compounds. To do that, several Cu and Ti thin layers were alternatively deposited by Ar+ sputtering on silicon wafers and, subsequently, oxidized by thermal annealing. The obtained samples were characterized in terms of %at. Cu–Ti ratios (by RBS and SIMS analyses) and morphology (by AFM and SEM investigations), showing the abundance ratios of such elements in the whole structure. In particular, SIMS maps allowed to study the spatial distribution and thickness of each phase of the Cu–Ti multilayers and further to observe the Cu diffusion and the mixing with Ti, as well as phase separation of CuO and TiO2 in the samples. This unwanted effect represents an open issue that has to be investigated, in order to improve the MOS fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Lange U and Mirsky U M 2011 Anal. Chim. Acta 687 2

    Google Scholar 

  2. Franke M E, Koplin T J and Simon U 2006 Small 2 1

    Article  Google Scholar 

  3. Wang C, Yin L, Zhang L, Xiang D and Gao R 2010 Sensors 10 3

    Article  CAS  Google Scholar 

  4. Nunes D, Pimentel A, Gonçalves A, Pereira S, Branquinho R, Barquinha P et al 2019 Semicond. Sci. Technol. 34 043001

    Article  CAS  Google Scholar 

  5. Kang X, Liu S, Dai Z, He Y, Song X and Tan Z 2019 Catalysts 9 2

    Google Scholar 

  6. Haider A J, Jameel Z N and Al-Hussaini I H M 2019 Energy Procedia 157 17

    Article  CAS  Google Scholar 

  7. Zhang Q, Zhang K, Xu D, Yang G and Huang H 2014 Prog. Mater. Sci. 60 208

    Article  CAS  Google Scholar 

  8. Grigore M E, Biscu E R, Holban A M, Gestal M C and Grumezescu A M 2016 Pharmaceuticals 9 4

    Article  Google Scholar 

  9. Rao G N, Yao Y D and Chen J W 2009 J. Appl. Phys. 105 9

    Article  Google Scholar 

  10. Yatskiv R, Tiagulskyi S, Grym J, Vaniš J, Bašinová N, Horak P et al 2019 Thin Solid Films 693 1

    Google Scholar 

  11. Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira Jr O N and Lin L 2018 Microchim. Acta 185 213

  12. Barreca D, Carraro G, Comini E, Gasparotto A, Maccato C, Sada C et al 2011 J. Phys. Chem. C 115 21

    Article  Google Scholar 

  13. Torrisi A, Horák P, Vacík J, Cannavò A, Ceccio G, Yatskiv R et al 2020 Mater. Today: Proc. 33 2512

    CAS  Google Scholar 

  14. Shi Q, Ping G, Wang X, Xu H, Li J, Cui J et al 2019 J. Mater. Chem. A 5 2253

    Article  Google Scholar 

  15. Maziarz W 2019 Appl. Surf. Sci. 480 361

    Article  CAS  Google Scholar 

  16. Su-Il In Dr, Vaughn II D D and Schaak R E 2012 Angew. Chem. Int. Ed. 51 16

    Google Scholar 

  17. Sawicka-Chudy P, Sibiński M, Wisz G, Rybak-Wilusz E and Cholewa M 2018 J. Phys. Conf. Ser. 1033 012002

    Article  Google Scholar 

  18. Torrisi A, Horák P, Vacík J, Cannavò A, Ceccio G, Vaniš J et al 2020 Phosphorus Sulfur Silicon Relat. Elem. 195 1

    Article  Google Scholar 

  19. Horak P, Lavrentiev V, Bejsovec V, Vacik J, Danis S, Vrnata M et al 2013 Eur. Phys. J. B 86 470

    Article  Google Scholar 

  20. http://www.ujf.cas.cz/cs/vyzkum-a-vyvoj/velke-vyzkumne-infrastruktury-a-centra/canam/laboratories/Laboratory3/

  21. https://home.mpcdf.mpg.de/~mam/

  22. http://www.srim.org/

  23. Feldman L C and Mayer J W 1986 Fundamentals of surface and thin film analysis (New York: North-Holland)

    Google Scholar 

  24. Wongpisutpaisan N, Vittyakorn N, Ruangphanit A and Pecharapa W 2013 Sains Malays. 42 175

    CAS  Google Scholar 

  25. Szkliniarz A, Szkliniarz W, Blacha L and Siwiec G 2016 Arch. Metall. Mater. 61 347

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out at the CANAM infrastructure of the NPI CAS Řež (www.ujf.cas.cz). We acknowledge the financial support from the Grant Agency of the Czech Republic, Project GACR No. 19-02804S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Torrisi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrisi, A., Horák, P., Vacík, J. et al. Synthesis of Cu–Ti thin film multilayers on silicon substrates. Bull Mater Sci 44, 50 (2021). https://doi.org/10.1007/s12034-020-02346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02346-6

Keywords

Navigation