Skip to main content
Log in

Vietoris hyperspaces over scattered Priestley spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study Vietoris hyperspaces of closed and final sets of Priestley spaces. We are particularly interested in Skula topologies. A topological space is Skula if its topology is generated by differences of open sets of another topology. A compact Skula space is scattered and moreover has a natural well-founded ordering compatible with the topology, namely, it is a Priestley space. One of our main objectives is investigating Vietoris hyperspaces of general Priestley spaces, addressing the question when their topologies are Skula and computing the associated ordinal ranks. We apply our results to scattered compact spaces based on certain almost disjoint families, in particular, Lusin families and ladder systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Abraham and R. Bonnet, Every superatomic subalgebra of an interval algebra is embeddable in an ordinal algebra, Proceedings of the American Mathematical Society 115 (1992), 585–592.

    Article  MathSciNet  MATH  Google Scholar 

  2. U. Abraham and R. Bonnet, Hausdorff’s theorem for posets that satisfy the finite antichain property, Fundamenta Mathematicae 159 (1999), 51–69.

    Article  MathSciNet  MATH  Google Scholar 

  3. U. Abraham, R. Bonnet and M. Rubin, On a superatomic Boolean algebra which is not generated by a well-founded sublattice, Israel Journal of Mathematics 123 (2001), 221–239.

    Article  MathSciNet  MATH  Google Scholar 

  4. U. Abraham, R. Bonnet and W. Kubiś, Poset algebras over well quasi-ordered posets, Algebra Universalis 58(3) (2008), 263–286.

    Article  MathSciNet  MATH  Google Scholar 

  5. U. Abraham, R. Bonnet, W. Kubis and M. Rubin, On poset Boolean algebras, Order 20 (2003), 265–290.

    Google Scholar 

  6. U. Abraham and S. Shelah, Lusin sequences under CH and under Martin’s Axiom, Fundamenta Mathematicae 169 (2001), 97–103.

    Article  MathSciNet  MATH  Google Scholar 

  7. U. Abraham and S. Shelah, Gaps over Stationary Sets, Journal of Symbolic Logic 69 (2004), 518–532.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Banakh, O. Gutik and M. Rajagopalan, On algebraic structures on scattered compacta, Topology and its Applications 153 (2005), 710–723.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Bezhanishvili, R. Mines and P. Morandi, The Priestley separation axiom for scattered spaces, Order 19 (2002), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, Providence, RI, 1967.

    MATH  Google Scholar 

  11. R. Bonnet, On superatomic Boolean algebras, in Finite and Infinite Combinatorics in Sets and Logic (Banff, AB, 1991), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 411, Kluwer Academic, Dordrecht, 1993, pp. 31–62.

    Book  Google Scholar 

  12. R. Bonnet and M. Rubin, On well-generated Boolean algebras, Annals of Pure and Applied Logic 105 (2000), 1–50.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Bonnet and M. Rubin, On essentially low, canonically well-generated Boolean algebras, Journal of Symbolic Logic 67 (2002), 369–396.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Bonnet and M. Rubin, A note on well-generated Boolean algebras in models satisfying Martin’s axiom, Discrete Mathematics 291 (2005), 7–18.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Bonnet and M. Rubin, On poset Boolean algebras of scattered posets with finite width, Archive for Mathematical Logic 43 (2004), 467–476.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Bonnet and M. Rubin, On a poset algebra which is hereditarily but not canonically well generated, Israel Journal of Mathematics 135 (2003), 299–326.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Bonnet and M. Rubin, Chains of well-generated Boolean algebras whose union is not well-generated, Israel Journal of Mathematics 154 (2006), 141–155.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Carruth, J. Hildebrant and R. Koch, The Theory of Topological Semigroups, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 75, Marcel Dekker, New York, 1983.

    MATH  Google Scholar 

  19. B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, New York, 2002.

    Book  MATH  Google Scholar 

  20. A. Dow and S. Watson, Skula spaces, Commentationes Mathematicae Universitatis Carolinae 31 (1990), 27–31.

    MathSciNet  MATH  Google Scholar 

  21. G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove and D. Scott, A Compendium of Continuous Lattices, Springer, Berlin—New York, 1980.

    Book  MATH  Google Scholar 

  22. G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove and D. Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, Vol. 93, Cambridge University Press, Cambridge, 2003.

    Book  MATH  Google Scholar 

  23. O. Gutik, M. Rajagopalan and K. Sundaresan, Compact semilattices with open principal filters, Journal of the Australian Mathematical Society 72 (2002), 349–362.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. P. Hart, J. Nagata and J. E. Vaughan, Encyclopedia of General Topology, Elsevier, Amsterdam, 2003.

    MATH  Google Scholar 

  25. A. Illanes and S. Nadler, Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 216, Marcel Dekker, New York, 1999.

    MATH  Google Scholar 

  26. S. Koppelberg, Handbook on Boolean Algebras. Vol. 1, North-Holland, Amsterdam, 1989.

    MATH  Google Scholar 

  27. J. B. Kruskal, The theory of well-quasi-ordering: A frequently discovered concept, Journal of Combinatorial Theory. Series A 13 (1972), 297–305.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Kurepa, Sur la puissance des ensembles partiellement ordonnés, Sprawozdania Towarzystwa Naukowego Warszawskiego. Matematyka-Fizyka 32 (1939), 61–67.

    MATH  Google Scholar 

  29. K. Kunen and J. E. Vaughan, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984.

    MATH  Google Scholar 

  30. N. N. Luzin, On subsets of the series of natural numbers, Izvestiya Akademiya Nauk SSSR. Seriya Matematicheskay 11 (1947), 403–410.

    MathSciNet  Google Scholar 

  31. S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, Vol. 5, Springer, New York, 1998.

    MATH  Google Scholar 

  32. E. Michael, Topologies on spaces of subsets, Transactions of the American Mathematical Society 71 (1951), 152–182.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. D. Monk, Cardinal Invariants on Boolean Algebras, Progress in Mathematics, Vol. 142, Birkhäuser, Basel, 1996.

    Book  MATH  Google Scholar 

  34. S. Mrówka, On completely regular spaces, Fundamenta Mathematicae 41 (1954), 105–106.

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Nachbin, Topology and Order, Van Nostrand Mathematical Studies, Vol. 4, D. Van Nostrand, Princeton, NJ—Toronto, ON—London, 1965.

    MATH  Google Scholar 

  36. R. Si. Pierce, Countable Boolean algebras, in Handbook on Boolean Algebras. Vol. 3, North-Holland, Amsterdam, 1989, pp. 775–876.

    Google Scholar 

  37. M. Pouzet, Private communication, 2018.

  38. H. A. Priestley, Representation of distributive lattices by means of ordered stone spaces, Bulletin of the London Mathematical Society 2 (1970), 186–190.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Rubin, A Boolean algebra with few subalgebras, interval boolean algebras and retractiveness, Transactions of the American Mathematical Society 278 (1983), 65–89

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Roman, Lattices and Ordered Sets, Springer, New York, 2008.

    MATH  Google Scholar 

  41. L. Skula, On a reflective subcategory of the category of all topological spaces, Transactions of the American Mathematical Society 142 (1969), 37–41

    MathSciNet  MATH  Google Scholar 

  42. A. Stralka, A partially ordered space which is not a Priestley space, Semigroup Forum 20 (1980), 293–297.

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Telgàrsky, Derivatives of Cartesian product and dispersed spaces, Colloquium Mathematicum 19 (1968), 59–66.

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Vietoris, Bereiche zweiter Ordnung, Monatshefte für Mathematik und Physik 32 (1922), 258–280.

    Article  MathSciNet  MATH  Google Scholar 

  45. N. Zaguia, Chaînes d’idéaux et de sections initiales d’un ensemble ordonné, Publications du Département de Mathématiques. Université Claude Bernard-Lyon I 7/D (1983), 13–38; http://www.numdam.org/article/PDML_1983___7D_13_0.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bonnet.

Additional information

Dedicated to the memory of Matatyahu Rubin (1946–2017)

Partially supported by NCN grant DEC-2012/07/D/ST1/02087 (The National Science Center, Poland).

Supported by the Institute of Mathematics, Czech Academy of Sciences.

Supported by the GA ČR grant 20-22230L (Czech Science Foundation).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banakh, T., Bonnet, R. & Kubiś, W. Vietoris hyperspaces over scattered Priestley spaces. Isr. J. Math. 249, 37–81 (2022). https://doi.org/10.1007/s11856-022-2307-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2307-5

Navigation