Skip to main content
Log in

Projection inequalities for antichains

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let n be an integer with n ≥ 2. A set A ⊆ ℝn is called an antichain (resp. weak antichain) if it does not contain two distinct elements x = (x1, …, xn) and y = (y1, …, yn) satisfying xiyi (resp. xi < yi) for all i ∈ {1, …, n}. We show that the Hausdorff dimension of a weak antichain A in the n-dimensional unit cube [0, 1]n is at most n − 1 and that the (n − 1)-dimensional Hausdorff measure of A is at most n, which are the best possible bounds. This result is derived as a corollary of the following projection inequality, which may be of independent interest: The (n −1)- dimensional Hausdorff measure of a (weak) antichain A ⊆ [0, 1]n cannot exceed the sum of the (n − 1)-dimensional Hausdorff measures of the n orthogonal projections of A onto the facets of the unit n-cube containing the origin. For the proof of this result we establish a discrete variant of the projection inequality applicable to weak antichains in ℤn and combine it with ideas from geometric measure theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Anderson, Combinatorics of Finite Sets, Dover Publications, Mineola, NY, 2002.

    MATH  Google Scholar 

  2. C. J. Bishop and Y. Peres, Fractals in Probability and Analysis, Cambridge Studies in Advanced Mathematics, Vol. 162, Cambridge University Press, Cambridge 2017.

    Book  Google Scholar 

  3. V. I. Bogachev, Measure Theory. Vols. I, II, Springer, Berlin, 2007.

    MATH  Google Scholar 

  4. B. Bollobás, Measure graphs, Journal of the London Mathematical Society 21 (1980), 401–412.

    Article  MathSciNet  Google Scholar 

  5. B. Bollobás and N. Th. Varopoulos, Representation of systems of measurable sets, Mathematical Proceedings of the Cambridge Philosophical Society 78 (1975), 323–325.

    Article  MathSciNet  Google Scholar 

  6. N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen and D. Kruyswijk, On the set of divisors of a number, Nieuw Archief voor Wiskunde 23 (1951), 191–193.

    MathSciNet  MATH  Google Scholar 

  7. Y. Chabrillac and J.-P. Crouzeix, Continuity and differentiability properties of monotone real functions of several real variables, Mathematical Programming Study 30 (1987), 1–16.

    Article  MathSciNet  Google Scholar 

  8. D. L. Cohn, Measure Theory, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/Springer, New York, 2013.

    Book  Google Scholar 

  9. K. Engel, A continuous version of a Sperner-type theorem, Elektronische Informationsverarbeitung und Kybernetik 22 (1986), 45–50.

    MathSciNet  MATH  Google Scholar 

  10. K. Engel, Sperner Theory, Encyclopedia of Mathematics and its Applications, Vol. 65, Cambridge University Press, Cambridge, 1997.

  11. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  12. K. Falconer, Fractal Geometry, John Wiley & Sons, Chichester, 1990.

    MATH  Google Scholar 

  13. J. Foran, The length of the graph of a one to one function from [0, 1] to [0, 1], Real Analysis Exchange 25 (1999/00), 809–816.

  14. P. Frankl and R. M. Wilson, The Erdős-Ko-Rado theorem for vector spaces, Journal of Combinatorial Theory. Series A 43 (1986), 228–236.

    Article  MathSciNet  Google Scholar 

  15. B. Janzer, Projections of antichains, Electronic Journal of Combinatorics 27 (2020), 1.54.

  16. B. Janzer, A note on antichains in the continuous cube, Mathematika 66 (2020), 514–516.

    Article  MathSciNet  Google Scholar 

  17. G. O. H. Katona, Continuous versions of some extremal hypergraph problems, in Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Colloquia Mathematica Societatis János Bolyai, Vol. 18, North-Holland, Amsterdam-New York, 1978, pp. 653–678.

    Google Scholar 

  18. G. O. H. Katona, Continuous versions of some extremal hypergraph problems. II, Acta Mathematica. Academiae Scientiarum Hungaricae 35 (1980), 67–77.

    Article  MathSciNet  Google Scholar 

  19. D. A. Klain and G.-C. Rota, A continuous analogue of Sperner's theorem, Communications on Pure and Applied Mathematics 50 (1997), 205–223.

    Article  MathSciNet  Google Scholar 

  20. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge University Press, Cambridge, 1995.

    Book  Google Scholar 

  21. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, Vol. 151, Cambridge University Press, Cambridge, 2014.

    MATH  Google Scholar 

  22. E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Mathematische Zeitschrift 27 (1928), 544–548.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Reiher.

Additional information

Research was supported by the Czech Science Foundation, grant number GJ16-07822Y, by GAČR project 18-01472Y and RVO: 67985840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engel, K., Mitsis, T., Pelekis, C. et al. Projection inequalities for antichains. Isr. J. Math. 238, 61–90 (2020). https://doi.org/10.1007/s11856-020-2013-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2013-0

Navigation