Skip to main content

Advertisement

Log in

Influence of Processing Conditions on Properties of AISI 316LN Steel Grade

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of rolling temperatures performed at ambient and cryogenic conditions in the interval of deformations ε = <10; 50> (%) on structural development and mechanical properties of steel grade AISI 316LN was studied. The evaluations of microstructures were studied by optical and transmission electron microscopy. The initial strength properties of the material after solution annealing tested at 293 K were: RP0,2 = 325 MPa, Rm = 640 MPa, and A5 = 49%. The biggest values of strength properties were obtained by material processing at cryorolling conditions with thickness reduction of 50% and tested at 77 K as follows: RP0,2 = 1571 MPa, Rm = 1880 MPa, and A5 = 4%. From the analysis, it is resulted that the dislocation slip is the main mechanism of plastic deformation realized by rolling at ambient temperatures; at cryogenic temperatures, it is possible to observe a combination of dislocation slip accompanied with deformation twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Sas, S. Kauffmann-Weiss, and K.-P. Weiss, Effect of Aging on Mechanical Properties of 316LN at 4.2 K for Fusion Applications, Acta Metall. Slovaca, 2018, 24, p 287–295. https://doi.org/10.12776/ams.v24i4.1140

    Article  Google Scholar 

  2. K.-P. Weiss, N. Bagrets, J. Sas, A. Jung, S.I. Schlachter, A. Della Corte, G. Celentano, and T. Kvačkaj, Mechanical and Thermal Properties of Central Former Material for High-Current Superconducting Cables, IEEE Trans. Appl. Superconduct., 2016, 26, p 7457353. https://doi.org/10.1109/tasc.2016.2539101

    Article  CAS  Google Scholar 

  3. J.R. Davis, Alloy Digest Sourcebook: Stainless Steels. ASM International, 2000, ISBN: 978-0-87170-649-2

  4. ASM Handbook: Properties and Selection: Irons, Steels, and High Performance Alloys. Volume 1, 2005, ISBN 0-87170-380-7

  5. M.F. McGuire, Stainless Steels for Design Engineers. ASM International, 2008, ISBN: 0871707179

  6. M.L.G. Byrnes, M. Grujicic, and W.S. Owen, Nitrogen Strengthening of a Stable Austenitic Stainless Steel, Acta Mater., 1987, 35(7), p 1853–1862

    Article  CAS  Google Scholar 

  7. V.S.A. Challa, X.L. Wan, M.C. Somani, L.P. Karjalainen, and R.D.K. Misra, Strain Hardening Behavior of Phase Reversion-Induced Nanograined/Ultrafine-Grained (NG/UFG) Austenitic Stainless Steel and Relationship with Grain Size and Deformation Mechanism, Mater. Sci. Eng., A, 2014, 613, p 60–70

    Article  CAS  Google Scholar 

  8. Y. Xiong, Y. Yuec, Y. Lu, T. He, M. Fan, F. Ren, and W. Cao, Cryorolling Impacts on Microstructure and Mechanical Properties of AISI316 LN Austenitic Stainless Steel, Mater. Sci. Eng., A, 2018, 709, p 270–276

    Article  CAS  Google Scholar 

  9. A. Sato, K. Soma, and T. Mori, Hardening Due to Pre-existing ε-Martensite in an Fe-30Mn-1Si alloy single crystal, Acta Mater., 1982, 30, p 1901–1907

    Article  CAS  Google Scholar 

  10. V. Seetharaman, Deformation and Martensite Transformation, Bull. Mater. Sci., 1984, 6, p 703–716

    Article  CAS  Google Scholar 

  11. J. Manjanna, S. Kobayashi, Y. Kamada, S. Takahashi, and H. Kikuchi, Martensitic Transformation in SUS 316LN Austenitic Stainless Steel at RT, J. Mater. Sci., 2008, 43, p 2659–2665

    Article  CAS  Google Scholar 

  12. D. Šimčák, T. Kvačkaj, R. Kočiško, R. Bidulský, J. Kepič, and V. Puchý, Evaluation of Hight Purity Aluminium After Asymmetric Rolling at Ambient and Cryogenic Temperatures, Acta Metall. Slovaca, 2017, 23, p 99–104. https://doi.org/10.12776/ams.v23i2.928

    Article  Google Scholar 

  13. D. Hradil, M. Duchek, T. Hrbáčková, and A. Ciski, Gas nitriding with Deep Cryogenic Treatment of High-Speed Steel, Acta Metall. Slovaca, 2018, 24, p 187–193. https://doi.org/10.12776/ams.v24i2.1058

    Article  Google Scholar 

  14. M. Sehri, H. Ghayour, K. Amini, M. Naseri, H. Rastegari, and V. Javaeri, Effects of Cryogenic Treatment on Microstructure and Wear Resistance of Fe-0.35C-6.3Cr Martensitic Steel, Acta Metall. Slovaca, 2018, 24, p 134–146. https://doi.org/10.12776/ams.v24i2.1037

    Article  Google Scholar 

  15. T. Kvackaj, J. Bidulska, R. Bidulsky, A. Kovačova, R. Kocisko, P. Bella, M. Luptak, and J. Bacso, Influence of Annealing Conditions on Structural Development of Cryo Rolled FeSi Steel, Acta Phys. Pol., A, 2014, 126, p 184–185. https://doi.org/10.12693/APhysPolA.126.184

    Article  CAS  Google Scholar 

  16. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: fcc Versus bcc Metals, Mater. Sci. Eng., A, 2004, 381, p 71–79. https://doi.org/10.1016/j.msea.2004.03.064

    Article  CAS  Google Scholar 

  17. T. Kvackaj, R. Kočiško, J. Tiža, J. Bidulská, A. Kovácová, R. Bidulský, J. Bacsó, and M. Vlado, Application of Workability Test to SPD Processing, Arch. Metall. Mater., 2013, 58, p 407–412. https://doi.org/10.2478/amm-2013-0008

    Article  CAS  Google Scholar 

  18. T. Kvackaj, P. Bella, R. Bidulsky, R. Kocisko, P. Petrousek, A. Fedorikova, J. Bidulska, J. Jandacka, M. Luptak, M. Cernik, and R. Pernis, The Effect of Cryo-Rolling and Annealing on Magnetic Properties in Non-oriented Electrical Steel, Acta Phys. Pol., A, 2017, 131(4), p 1105–1107. https://doi.org/10.12693/APhysPolA.131.1105

    Article  CAS  Google Scholar 

  19. I. Ucok, T. Ando, and N.J. Grant, Property Enhancement in Type 316L Stainless Steel by Spray Forming, Mater. Sci. Eng, 1991, A133, p 284–287

    Article  CAS  Google Scholar 

  20. Y. Xiong, T. He, J. Wang, Y. Lu, L. Chen, F. Ren, Y. Liu, and A. Volinsky, Cryorolling Effect on Microstructure and Mechanical Properties of Fe-25Cr-20Ni Austenitic Stainless Steel, Mater. Des., 2018, 88, p 398–405. https://doi.org/10.1016/j.matdes.2015.09.029

    Article  CAS  Google Scholar 

  21. B. Roy, R. Kumar, and J. Das, Effect of Cryorolling on the Microstructure and Tensile Properties of Bulk Nano-Austenitic Stainless Steel, Mater. Sci. Eng., A, 2015, 631, p 241–247. https://doi.org/10.1016/j.msea.2015.02.050

    Article  CAS  Google Scholar 

  22. W. Wei, S.L. Wang, K.X. Wei, I.V. Alexandrov, Q.B. Du, and J. Hu, Microstructure and Tensile Properties of Cu-Al Alloys Processed by ECAP and Rolling at Cryogenic Temperature, J. Alloys Compd., 2016, 678, p 506–510. https://doi.org/10.1016/j.jallcom.2016.04.035

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by VEGA project 1/0599/18 and “Center of research of efficient integration of combined systems based on renewable energy sources” ITMS 26220220064, financed through European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Kvackaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvackaj, T., Rozsypalova, A., Kocisko, R. et al. Influence of Processing Conditions on Properties of AISI 316LN Steel Grade. J. of Materi Eng and Perform 29, 1509–1514 (2020). https://doi.org/10.1007/s11665-020-04561-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04561-y

Keywords

Navigation