Skip to main content
Log in

\({\hbox {LDA}}+{\hbox {U}}\) Calculation of Electronic and Thermoelectric Properties of Doped Tetrahedrite \({\hbox {Cu}}_{12}{\hbox {Sb}}_{4}{\hbox {S}}_{13}\)

  • Topical Collection: International Conference on Thermoelectrics 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tetrahedrite-based thermoelectric materials have received much attention in recent years due to their good thermoelectric performance and earth-abundance. The parent compound \({\hbox {Cu}}_{12}{\hbox {Sb}}_{4}{\hbox {S}}_{13}\) exhibits a high power factor and low lattice thermal conductivity. Further enhancement of the thermoelectric figure of merit ZT is expected in substituted compounds, primarily at the Cu site \({\hbox {Cu}}_{12-x}{\hbox {M}}_{x}{\hbox {Sb}}_{4}{\hbox {S}}_{13}\). In this work we have studied the impact of substitution effects on thermoelectric properties using density-functional theory electronic structure calculations in combination with calculation of electrical transport properties by the BoltzTrap program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X.Y. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).

    Article  Google Scholar 

  2. R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).

    Article  Google Scholar 

  3. K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 51201 (2012).

    Article  Google Scholar 

  4. K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 43712 (2013).

    Article  Google Scholar 

  5. J. Heo, G. Laurita, S. Muir, M.A. Subramanian, and D.A. Keszler, Chem. Mater. 26, 2047 (2014).

    Article  Google Scholar 

  6. K. Suekuni, Y. Tomizawa, T. Ozaki, and M. Koyano, J. Appl. Phys. 115, 143702 (2014).

    Article  Google Scholar 

  7. X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).

    Article  Google Scholar 

  8. R. Chetty, D.S.P. Kumar, G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giester, and R.C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2015).

    Article  Google Scholar 

  9. R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).

    Article  Google Scholar 

  10. S. Tippireddy, R. Chetty, M.H. Naik, M. Jain, K. Chattopadhyay, and R.C. Mallik, J. Phys. Chem. C 122, 8735 (2018).

    Article  Google Scholar 

  11. D.S.P. Kumar, R. Chetty, P. Rogl, G. Rogl, E. Bauer, P. Malar, and R.C. Mallik, Intermetallics 78, 21 (2016).

    Article  Google Scholar 

  12. Y. Kosaka, K. Suekuni, K. Hashikuni, Y. Bouyrie, M. Ohta, and T. Takabatake, Phys. Chem. Chem. Phys. 19, 8874 (2017).

    Article  Google Scholar 

  13. P. Levinský, C. Candolfi, A. Dauscher, B. Lenoir, and J. Hejtmánek, J. Electron. Mater. (accepted).

  14. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Technische Universität, Wien (2014). www.wien2k.at.

  15. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  16. Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher, J. Tobola, and B. Lenoir, J. Mater. Chem. C 3, 10476 (2015).

    Article  Google Scholar 

  17. X. Lu, W. Yao, G.W. Wang, X.Y. Zhou, D. Morelli, Y.S. Zhang, H. Chi, S. Hui, and C. Uher, J. Mater. Chem. A 4, 17096 (2016).

    Article  Google Scholar 

  18. Y.O. Ciftci and S.D. Mahanti, J. Appl. Phys. 119, 145703 (2016).

    Article  Google Scholar 

  19. M. Miyata, T. Ozaki, T. Takeuchi, S. Nishino, M. Inukai, and M. Koyano, J. Electron. Mater. 47, 3254 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project No. 18-12761S of the Czech Science Foundation. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme ‘‘Projects of Large Research, Development, and Innovations Infrastructures’’ (CESNET LM2015042), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Knížek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knížek, K., Levinský, P. & Hejtmánek, J. \({\hbox {LDA}}+{\hbox {U}}\) Calculation of Electronic and Thermoelectric Properties of Doped Tetrahedrite \({\hbox {Cu}}_{12}{\hbox {Sb}}_{4}{\hbox {S}}_{13}\). J. Electron. Mater. 48, 2018–2021 (2019). https://doi.org/10.1007/s11664-019-06960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06960-x

Keywords

Navigation