Skip to main content
Log in

Polarization Accuracy Verification of the Chromospheric LAyer SpectroPolarimeter

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We have developed an advanced UV spectropolarimeter called Chromospheric LAyer SpectroPolarimeter (CLASP2), aimed at achieving very high accuracy measurements (<0.1% at \(3\sigma \)) of the linear (\(Q/I\) and \(U/I\)) and circular (\(V/I\)) polarizations of the Mg ii h and k lines (280 nm). CLASP2 was launched on board a NASA sounding rocket on April 11, 2019. It successfully detected the full Stokes vector in an active-region plage and in the quiet Sun near the limb across the Mg ii h and k lines for the first time. To verify the polarization characteristics of CLASP2, the response matrix is estimated by combining the results obtained from the preflight calibration on the ground, with the results of the inflight calibration acquired at the solar-disk center. We find that the response matrix of CLASP2 in the Mg ii h and k lines is notably close to an ideal response matrix, i.e., the scale factor and the crosstalk terms are close to 1 and 0, respectively. Moreover, the uncertainty of each Stokes parameter estimated by the repeatability of the measurements is verified to be within the required tolerance. Based on our investigation, we conclude that CLASP2 achieves \(0.1\%\) polarization accuracy at a \(3\sigma \) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alsina Ballester, E., Belluzzi, L., Trujillo Bueno, J.: 2016, The magnetic sensitivity of the Mg II k line to the joint action of Hanle, Zeeman, and magneto-optical effects. Astrophys. J. Lett. 831, L15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Belluzzi, L., Trujillo Bueno, J.: 2012, The polarization of the solar Mg II h and k lines. Astrophys. J. Lett. 750, L11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Berger, T., Mudge, J., Holmes, B., Searcy, P., Wuelser, J.P., Lemen, J., Title, A.: 2012, Design and fabrication of the near-ultraviolet birefringent Solc filter for the NASA IRIS solar physics mission. In: Johnson, R.B., Mahajan, V.N., Thibault, S. (eds.) Current Developments in Lens Design and Optical Engineering XIII, SPIE Conf. Ser. 8486, 84860G. DOI. ADS.

    Chapter  Google Scholar 

  • De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014a, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Rouppe van der Voort, L., McIntosh, S.W., Pereira, T.M.D., Carlsson, M., Hansteen, V., Skogsrud, H., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., De Luca, E.E., Golub, L., McKillop, S., Reeves, K., Saar, S., Testa, P., Tian, H., Kankelborg, C., Jaeggli, S., Kleint, L., Martinez-Sykora, J.: 2014b, On the prevalence of small-scale twist in the solar chromosphere and transition region. Science 346, 1255732. DOI. ADS.

    Article  Google Scholar 

  • De Pontieu, B., Polito, V., Hansteen, V., Testa, P., Reeves, K.K., Antolin, P., Nóbrega-Siverio, D.E., Kowalski, A.F., Martinez-Sykora, J., Carlsson, M., McIntosh, S.W., Liu, W., Daw, A., Kankelborg, C.C.: 2021, A new view of the solar interface region from the Interface Region Imaging Spectrograph (IRIS). Solar Phys. 296, 84. DOI. ADS.

    Article  ADS  Google Scholar 

  • del Pino Alemán, T., Casini, R., Manso Sainz, R.: 2016, Magnetic diagnostics of the solar chromosphere with the Mg II h-k lines. Astrophys. J. Lett. 830, L24. DOI. ADS.

    Article  ADS  Google Scholar 

  • del Pino Alemán, T., Trujillo Bueno, J., Casini, R., Manso Sainz, R.: 2020, The magnetic sensitivity of the resonance and subordinate lines of Mg II in the solar chromosphere. Astrophys. J. 891, 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Elmore, D.F.: 1990, A polarization calibration technique for the Advanced Stokes Polarimeter, NCAR Technical Note, NCAR/TN-355+STR, Boulder, Colorado.

  • Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI. ADS.

    Article  ADS  Google Scholar 

  • Giono, G., Ishikawa, R., Narukage, N., Kano, R., Katsukawa, Y., Kubo, M., Ishikawa, S., Bando, T., Hara, H., Suematsu, Y., Winebarger, A., Kobayashi, K., Auchère, F., Trujillo Bueno, J.: 2016, Polarization calibration of the chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1 % polarization sensitivity in the VUV range. Part I: preflight calibration. Solar Phys. 291, 3831. DOI. ADS.

    Article  ADS  Google Scholar 

  • Giono, G., Ishikawa, R., Narukage, N., Kano, R., Katsukawa, Y., Kubo, M., Ishikawa, S., Bando, T., Hara, H., Suematsu, Y., Winebarger, A., Kobayashi, K., Auchère, F., Trujillo Bueno, J., Tsuneta, S., Shimizu, T., Sakao, T., Cirtain, J., Champey, P., Asensio Ramos, A., Štěpán, J., Belluzzi, L., Manso Sainz, R., De Pontieu, B., Ichimoto, K., Carlsson, M., Casini, R., Goto, M.: 2017, Polarization calibration of the chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1% polarization sensitivity in the VUV range. Part II: in-flight calibration. Solar Phys. 292, 57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ichimoto, K., Lites, B., Elmore, D., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Shimizu, T., Shine, R., Tarbell, T., Title, A., Kiyohara, J., Shinoda, K., Card, G., Lecinski, A., Streander, K., Nakagiri, M., Miyashita, M., Noguchi, M., Hoffmann, C., Cruz, T.: 2008, Polarization calibration of the solar optical telescope onboard Hinode. Solar Phys. 249, 233. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ishikawa, R., Kano, R., Bando, T., Suematsu, Y., Ishikawa, S-n., Kubo, M., Narukage, N., Hara, H., Tsuneta, S., Watanabe, H., Ichimoto, K., Aoki, K., Miyagawa, K.: 2013, Birefringence of magnesium fluoride in the vacuum ultraviolet and application to a half-waveplate. Appl. Opt. 52, 8205. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ishikawa, R., Narukage, N., Kubo, M., Ishikawa, S., Kano, R., Tsuneta, S.: 2014, Strategy for realizing high-precision VUV spectro-polarimeter. Solar Phys. 289, 4727. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ishikawa, S., Shimizu, T., Kano, R., Bando, T., Ishikawa, R., Giono, G., Tsuneta, S., Nakayama, S., Tajima, T.: 2015, Development of a precise polarization modulator for UV spectropolarimetry. Solar Phys. 290, 3081. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ishikawa, R., Trujillo Bueno, J., Uitenbroek, H., Kubo, M., Tsuneta, S., Goto, M., Kano, R., Narukage, N., Bando, T., Katsukawa, Y., Ishikawa, S., Giono, G., Suematsu, Y., Hara, H., Shimizu, T., Sakao, T., Winebarger, A., Kobayashi, K., Cirtain, J., Champey, P., Auchère, F., Štěpán, J., Belluzzi, L., Asensio Ramos, A., Manso Sainz, R., De Pontieu, B., Ichimoto, K., Carlsson, M., Casini, R.: 2017, Indication of the Hanle effect by comparing the scattering polarization observed by CLASP in the Ly\(\alpha\) and Si III 120.65 nm lines. Astrophys. J. 841, 31. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ishikawa, R., Bueno, J.T., del Pino Alemán, T., Okamoto, T.J., McKenzie, D.E., Auchère, F., Kano, R., Song, D., Yoshida, M., Rachmeler, L.A., Kobayashi, K., Hara, H., Kubo, M., Narukage, N., Sakao, T., Shimizu, T., Suematsu, Y., Bethge, C., De Pontieu, B., Dalda, A.S., Vigil, G.D., Winebarger, A., Ballester, E.A., Belluzzi, L., Štěpán, J., Ramos, A.A., Carlsson, M., Leenaarts, J.: 2021, Mapping solar magnetic fields from the photosphere to the base of the corona. Sci. Adv. 7, eabe8406. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kano, R., Bando, T., Narukage, N., Ishikawa, R., Tsuneta, S., Katsukawa, Y., Kubo, M., Ishikawa, S-n., Hara, H., Shimizu, T., Suematsu, Y., Ichimoto, K., Sakao, T., Goto, M., Kato, Y., Imada, S., Kobayashi, K., Holloway, T., Winebarger, A., Cirtain, J., De Pontieu, B., Casini, R., Trujillo Bueno, J., Štepán, J., Manso Sainz, R., Belluzzi, L., Asensio Ramos, A., Auchère, F., Carlsson, M.: 2012, Chromospheric Lyman-alpha spectro-polarimeter (CLASP). In: Takahashi, T., Murray, S.S., den Herder, J.-W.A. (eds.) Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, SPIE Conf. Ser. 8443, 84434F. DOI. ADS.

    Chapter  Google Scholar 

  • Kano, R., Trujillo Bueno, J., Winebarger, A., Auchère, F., Narukage, N., Ishikawa, R., Kobayashi, K., Bando, T., Katsukawa, Y., Kubo, M., Ishikawa, S., Giono, G., Hara, H., Suematsu, Y., Shimizu, T., Sakao, T., Tsuneta, S., Ichimoto, K., Goto, M., Belluzzi, L., Štěpán, J., Asensio Ramos, A., Manso Sainz, R., Champey, P., Cirtain, J., De Pontieu, B., Casini, R., Carlsson, M.: 2017, Discovery of scattering polarization in the hydrogen Ly\(\alpha\) line of the solar disk radiation. Astrophys. J. Lett. 839, L10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kubo, M., Katsukawa, Y., Suematsu, Y., Kano, R., Bando, T., Narukage, N., Ishikawa, R., Hara, H., Giono, G., Tsuneta, S., Ishikawa, S., Shimizu, T., Sakao, T., Winebarger, A., Kobayashi, K., Cirtain, J., Champey, P., Auchère, F., Trujillo Bueno, J., Asensio Ramos, A., Štěpán, J., Belluzzi, L., Manso Sainz, R., De Pontieu, B., Ichimoto, K., Carlsson, M., Casini, R., Goto, M.: 2016, Discovery of ubiquitous fast-propagating intensity disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP). Astrophys. J. 832, 141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Narukage, N., Auchère, F., Ishikawa, R., Kano, R., Tsuneta, S., Winebarger, A.R., Kobayashi, K.: 2015, Vacuum ultraviolet spectropolarimeter design for precise polarization measurements. Appl. Opt. 54, 2080. DOI. ADS.

    Article  ADS  Google Scholar 

  • Narukage, N., McKenzie, D.E., Ishikawa, R., Trujillo-Bueno, J., De Pontieu, B., Kubo, M., Ishikawa, S-n., Kano, R., Suematsu, Y., Yoshida, M., Rachmeler, L.A., Kobayashi, K., Cirtain, J.W., Winebarger, A.R., Asensio Ramos, A., del Pino Aleman, T., Štěpán, J., Belluzzi, L., Larruquert, J.I., Auchère, F., Leenaarts, J., Carlsson, M.J.L.: 2016, Chromospheric LAyer SpectroPolarimeter (CLASP2). In: den Herder, J.-W.A., Takahashi, T., Bautz, M. (eds.) Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, SPIE Conf. Ser. 9905, 990508. DOI. ADS.

    Chapter  Google Scholar 

  • Okamoto, T.J., Antolin, P., De Pontieu, B., Uitenbroek, H., Van Doorsselaere, T., Yokoyama, T.: 2015, Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects. Astrophys. J. 809, 71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rachmeler, L.A., Trujillo Bueno, J., McKenzie, D.E., Ishikawa, R., Auchère, F., Kobayashi, K., Kano, R., Okamoto, T.J., Bethge, C.W., Song, D., Alsina Ballester, E., Belluzzi, L., del Pino Alemán, T., Ramos, A.A., Yoshida, M., Shimizu, T., Winebarger, A., Kobelski, A.R., Vigil, G.D., De Pontieu, B., Narukage, N., Kubo, M., Sakao, T., Hara, H., Suematsu, Y., Štěpán, J., Carlsson, M., Leenaarts, J.: 2022, Quiet Sun center to limb variation of the linear polarization observed by CLASP2 across the Mg II h and k lines. Astrophys. J. 936, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruyten, W.: 1999, Smear correction for frame transfer charge-coupled-device cameras. Opt. Lett. 24, 878.

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shimizu, T., Watanabe, K., Nakayama, S., Tajima, T., Obara, S., Imada, S., Nishizuka, N., Ishikawa, S-n., Hara, H.: 2014, New developments in rotating and linear motion mechanisms used in contamination sensitive space telescopes. In: Navarro, R., Cunningham, C.R., Barto, A.A. (eds.) Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation, SPIE Conf. Ser. 9151, 915138. DOI. ADS.

    Chapter  Google Scholar 

  • Song, D., Chae, J., Kwak, H., Kano, R., Yurchyshyn, V., Moon, Y.-J., Lim, E.-K., Lee, J.: 2017a, Three-minute sunspot oscillations driven by magnetic reconnection in a light bridge. Astrophys. J. Lett. 850, L33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Song, D., Ishikawa, R., Kano, R., Shinoda, K., Yoshida: 2017b, Performance verification of the VUV coating for the CLASP2 flight mirrors. In: Accelerators and Instruments, UVSOR Activity Report 45, 36.

    Google Scholar 

  • Song, D., Ishikawa, R., Kano, R., Yoshida, M., Tsuzuki, T., Uraguchi, F., Shinoda, K., Hara, H., Okamoto, T.J., Auchère, F., McKenzie, D.E., Rachmeler, L.A., Trujillo Bueno, J.: 2018, Optical alignment of the high-precision UV spectro-polarimeter (CLASP2). In: den Herder, J.-W.A., Nikzad, S., Nakazawa, K. (eds.) Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, SPIE Conf. Ser. 10699, 106992W. DOI. ADS.

    Chapter  Google Scholar 

  • Štěpán, J., Trujillo Bueno, J., Leenaarts, J., Carlsson, M.: 2015, Three-dimensional radiative transfer simulations of the scattering polarization of the hydrogen Ly\(\alpha\) line in a magnetohydrodynamic model of the chromosphere-corona transition region. Astrophys. J. 803, 65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., DeLuca, E., Reeves, K.K., McKillop, S., De Pontieu, B., Martínez-Sykora, J., Carlsson, M., Hansteen, V., Kleint, L., Cheung, M., Golub, L., Saar, S., Testa, P., Weber, M., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., Kankelborg, C., Jaeggli, S., McIntosh, S.W.: 2014, High-resolution observations of the shock wave behavior for sunspot oscillations with the interface region imaging spectrograph. Astrophys. J. 786, 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Trujillo Bueno, J., Štěpán, J., Casini, R.: 2011, The hanle effect of the hydrogen Ly\(\alpha\) line for probing the magnetism of the solar transition region. Astrophys. J. Lett. 738, L11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsuzuki, T., Ishikawa, R., Kano, R., Narukage, N., Song, D., Yoshida, M., Uraguchi, F., Okamoto, T.J., McKenzie, D., Kobayashi, K., Rachmeler, L., Auchere, F., Trujillo Bueno, J.: 2020, Optical design of the Chromospheric LAyer Spectro-Polarimeter (CLASP2). In: Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, SPIE Conf. Ser. 11444, 114446W. DOI. ADS.

    Chapter  Google Scholar 

  • Yoshida, M., Song, D., Ishikawa, R., Kano, R., Katsukawa, Y., Suematsu, Y., Narukage, N., Kubo, M., Shinoda, K., Okamoto, T.J., McKenzie, D.E., Rachmeler, L.A., Auchère, F., Trujillo Bueno, J.: 2018, Wavefront error measurements and alignment of CLASP2 telescope with a dual-bandpass cold mirror coated primary mirror. In: den Herder, J.-W.A., Nikzad, S., Nakazawa, K. (eds.) Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, SPIE Conf. Ser. 10699, 1069930. DOI. ADS.

    Chapter  Google Scholar 

Download references

Acknowledgments

CLASP2 is an international partnership between NASA/MSFC, NAOJ, JAXA, IAC, and IAS; additional partners include ASCR, IRSOL, LMSAL, and the University of Oslo. The Japanese participation was funded by ISAS/JAXA as a Small Mission-of-Opportunity Program, JSPS KAKENHI Grant numbers JP25220703 and JP16H03963, a 2015 ISAS Grant for Promoting International Mission Collaboration, and by a 2016 NAOJ Grant for Development Collaboration. The USA participation was funded by NASA Award 16-HTIDS16_2-0027. The Spanish participation was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Advanced Grant agreement No. 742265). The French hardware participation was funded by CNES funds CLASP2-13616A and 13617A. IRSOL participation was founded by SNSF through grants 200021_175997 and CRSII5_180238

Author information

Authors and Affiliations

Authors

Contributions

1. Donguk Song: J-side Instrument Scientist (IS), experiments, data analysis, writing of the main manuscript text, corresponding author, 2. Ryohko Ishikawa: J-side Principal Investigator (PI), experiments, discussion on the data analysis, results and the manuscript. 3. Ryouhei Kano: J-side PI aide, experiments, discussion on the data analysis, results, and the manuscript. 4. David E. McKenzie: U-side PI, discussion of results and review of the manuscript. 5. Javier Trujillo Bueno: Spanish PI, review of the manuscript and theoretical study. 6. Frédéric Auchère: French PI, development of the CLASP2’s grating, 7. Laurel A. Rachmeler: U-side project scientist (PS), discussion on the manuscript. 8. Takenori J. Okamoto: J-side PS, discussion on the manuscript. 9. Masaki Yoshida: experiments. 10. Ken Kobayashi: discussion on the data analysis method. 11. Christian Bethge: in-flight data process of CLASP2. 12. Hirohisa Hara and 13. Kazuya Shinoda: development of a custom-made UV light source system for the pre-flight polarization calibration. 14. Toshifumi Shimizu: development of the Polarization Modulation Unit (PMU). 15. Yoshinori Suematsu: support the experiments. 16. Bart De Pontieu: CLASP2 project support and the manuscript review. 17. Amy Winebarger: CLASP2 project support. 18. Norlyuki Narukage: UV coating for CLASP2 mirrors. 19. Masahito Kubo: development and experiment of the CLASP/SJ system. 20. Taro Sakao: support the experiments. 21. Andrés Asensio Ramos and 22. Luca Belluzzi and 23. Jiří Štěpán and 24. Mats Calsson and 25. Tanausú del Pino Alemán and 26. Ernest Alsina Ballester: theatrical study and reviwe of the manuscript. 27. Genevieve D. Vigil: development of the collimator. 28. Jorrit Leenaarts: review of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Donguk Song.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Error Budgets for the CLASP2 Instrument

CLASP2 aims to achieve a polarization accuracy of \(0.1\%\) at the \(3\sigma \) level. The error budgets of CLASP2 are investigated to verify the performance of the instrument.

1.1 A.1 Instrumental Polarization by the CLASP2 Telescope

CLASP2 reused the classical Cassegrain telescope from the CLASP1 experiment, which has a symmetrical structure. Ishikawa et al. (2014) reported from the polarization ray tracing that the instrumental polarization caused by offaxis incidence at \(\pm 200''\) in CLASP1 was negligibly small. Based on this result, we assume that the influence of the offaxis incidence for CLASP2 is negligible, because the CLASP2 FOV is half that of CLASP1.

Meanwhile, for CLASP2, we recoated the primary mirror with a dual-bandpass “cold-mirror” coating (Yoshida et al., 2018). This allowed us to successfully achieve high reflectivity not only in the spectral window of Mg ii h and k lines (280 nm), but also in the Ly\(\alpha \) line (121.6 nm) for the SJ. However, the nonuniformity of this new coating can cause instrumental polarization. To evaluate the coating performance, we measured the reflectivity with \(p\)- and \(s\)-polarized beams around 280 nm of ten witness samples (1-inch flat mirrors), which are evenly deployed over the effective area of the primary mirror and coated simultaneously with the primary mirror (Song et al., 2017b).

The reflectivity of the witness samples is verified to be uniform over the ten witness samples within \(\pm 2\%\). In addition, the reflectivity between the \(p\)- and \(s\)-polarized Mg ii beams are confirmed to be the same within 0.1%. Ishikawa et al. (2014) evaluated that the coating nonuniformity within \(\pm 2\%\) can suppress the instrumental polarization down to \(10^{-3}\%\), which is negligibly small compared to other terms in Table 6.

Table 6 Error budgets of CLASP2.

1.2 A.2 Spurious Polarization by Photon Noise of CLASP2 Targets

The photon noise can limit the polarization sensitivity of CLASP2. Therefore, it is important to estimate the photon noise for each of the scientific targets of CLASP2: plage and quiet Sun near the limb. To this end, we measured the typical Mg ii intensity in a plage (\(1.0\times 10^{17}\) [\(\mbox{photon}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\) Å−1]) and a quiet Sun (\(2.0\times 10^{16}\) [\(\mbox{photon}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\) Å−1]) by using the Mg ii spectral data obtained from IRIS (De Pontieu et al., 2014a). Moreover, the number of photons are estimated by using the parameters of CLASP2 (spatial plate scale: \(0.''55\)/pixel, spectral plate scale: 0.005 nm/pixel, slit width: \(0.''55\), and photon throughput for all the optical components: \(1.8\%\)) as well as the scientific requirements for each target of a plage, i.e., 0.01 nm spectral resolution (2 pixels), \(2\,\mbox{--}\,3''\) spatial-resolution (4 pixels), and 2.5-minute observations (754 exposures) and a quiet Sun, i.e., 0.02 nm spectral resolution (4 pixels), \(10\,\mbox{--}\,11''\) spatial resolutions (20 pixels), and 2.3-minutes observation (690 exposures)). Subsequently, the expected total number of photons (\(N_{tot}\)) are \(8.5 \times 10^{7}\) (plage) and \(1.5 \times 10^{8}\) (quiet Sun).

The spurious polarization caused by the photon noise is evaluated by

$$ \Delta S_{PN}'=\frac{1}{a_{1}\sqrt{N_{tot}}}, $$
(36)

where \(a_{1}=0.505\) is a modulation coefficient when the phase retardation of the CLASP2 waveplate is \(234^{\circ}\) (see Section 3.2). Therefore, the anticipated spurious polarizations by the photon noise are \(0.021\%\) at the plage and \(0.018\%\) at the quiet Sun near the limb.

1.3 A.3 Spurious Polarization Caused by the Readout Noise of the CLASP2 Spectropolarimeter Camera

The readout noise (\(\sigma \)) of the CLASP2 spectropolarimeter camera is about 5.1 photons/exposure from one exposure. Based on the measured readout noise of the spectropolarimeter camera, the estimated spurious polarization caused by the readout noise is

$$ \Delta S_{RN}'= \frac{\sqrt{n \times s_{\lambda} \times s_{d}}\sigma}{a_{1} N_{tot}} ,$$
(37)

where \(N_{tot}\) and \(a_{1}\) are identical to the parameters explained in Appendix A.2. \(n\) and \(s\) are the total number of exposures and the number of pixels summed along the slit, respectively (\(n=754\) exposures and \(s_{\lambda}=2\) pixels and \(s_{d}=4\) pixels at the plage and \(n=690\) exposures and \(s_{\lambda}=4\) pixels and \(s_{d}=20\) pixels at the quiet Sun). The measured spurious polarizations with these parameters are \(0.0005\%\) (plage) and \(0.0007\%\) (quiet Sun).

Appendix B: Imperfection of the Light-Source System

2.1 B.1 Measurement Accuracy of the Phase Retardation for the Linear Polarizer and Misalignment Between the Waveplate and the Linear Polarizer

The demodulated polarization signals of \(q'\) and \(u'\) should show opposite signs between \(+V\) and \(-V\) inputs (Equation 17). However, as discussed in Section 5.3, \(V \rightarrow Q\) and \(U\) crosstalks have the same sign and are greater than 0.01 (maximum signal is about 0.029 at \(+V\) input of both channels) on both channels.

Next, we investigate whether this behavior can be explained by the imperfection of the light source that is used for the polarization calibration. Note that the phase retardation of the quarter waveplate \(\delta _{1/4}\) of the light source may not be exactly \(90^{\circ}\) and misalignment of the principal axis for the quarter waveplate installed inside the light-source chamber may exist. The output beam from the light-source system can be expressed as \([I, Q, U, V]^{\top}=[1, \cos 2^{2}\chi +\sin 2^{2}\chi \cos \delta _{1/4}, \cos 2\chi \sin 2\chi (1-\cos \delta _{1/4}), \sin 2\chi \sin \delta _{1/4}]^{ \top}\) in the Stokes-vector form. Here, \(\chi \) is the angle of the principal axis for the quarter waveplate with respect to the X-axis of the CLASP2 coordinate system. In the ideal case, \(\chi =135^{\circ}\) and \(\chi =45^{\circ}\) for \(+V\) and \(-V\) inputs, respectively. Note that the principal axis of the polarizer is set to the X-axis of the CLASP2 coordinate system and the linear polarization imparted to the quarter waveplate is \([1,1,0,0]^{\top}\).

Figure 10 shows the polarization states of the light source as a function of \(\delta _{1/4}\) and \(\chi \). This figure clearly shows that the residual \(Q\) and \(U\) can be caused by \(\delta _{1/4} \ne 90^{\circ}\) and \(\chi \ne 135^{\circ}\) or \(\chi \ne 45^{\circ}\), respectively. The residual \(Q\) signal can be explained by \(\delta _{1/4} \approx 89^{\circ}\) (the diamond symbol in Figure 10). The phase retardation is wavelength dependent and such a deviation by \(1^{\circ}\) is possible considering the measurement accuracy of the phase retardation. Similarly, the misalignment of the principal axis for the quarter waveplate by \(\approx 0.5^{\circ}\) is possible, which is comparable to the worst-case accuracy of the angle of the principal axis of the waveplate. On the other hand, the change in the \(V\) signal caused by such imperfection of the light source is small enough to be negligible, \(\approx 10^{-4}\).

Figure 10
figure 10

Variations of Stokes parameters \(Q\), \(U\), and \(V\) of the light source depending on the phase retardations (top) and the angles of the principal axis (bottom) of a quarter waveplate installed inside the light-source chamber. The black lines are for the configuration of \(-V\) input (the nominal angle of the principal axis of the quarter waveplate \(\chi \) is \(45^{\circ}\)), and the red dashed lines are for the configuration of \(+V\) input (\(\chi = 135^{\circ}\)). The black diamond and the asterisk represent the average signals of the residual Stokes \(Q\) and \(U\) parameters measured from \(\pm V\) inputs.

Based on these findings, the change of the response matrices due to the imperfection of the light source for a circularly polarized input is investigated. We find from Figure 10 that the degree of polarization of the \(V\) input is approximately 0.9998 when \(\delta _{1/4} \ne 90^{\circ}\), \(\chi \ne 135^{\circ}\), or \(\chi \ne 45^{\circ}\). This uncertainty of the \(V\) input beam mainly affects the accuracy of the scale factor of \(\boldsymbol{x}_{44}\) and the crosstalks of \(\boldsymbol{x}_{14}\), \(\boldsymbol{x}_{24}\), and \(\boldsymbol{x}_{34}\). Assuming that the degree of polarization of the \(V\) input beam is 0.9998, the representative response matrices (Equations 26 and 27) can be rewritten as follows:

$$ \boldsymbol{X}_{1}= \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} 1 & -0.00846 & -0.00550 & -0.00025 \\ 0 & +0.98549 & -0.03445 & +0.00682 \\ 0 & +0.03418 & +0.98621 & -0.00111 \\ 0 & +0.00743 & +0.00186 & +{\mathbf{0.98667}} \end{array}\displaystyle \right ) $$
(38)
$$ \boldsymbol{X}_{2}= \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} 1 & +0.00692 & -0.00704 & -0.00636 \\ 0 & +0.99088 & -0.00350 & +0.00693 \\ 0 & +0.00314 & +0.99119 & -0.00168 \\ 0 & -0.00143 & +0.00219 & +{\mathbf{0.98675}} \end{array}\displaystyle \right ). $$
(39)

We find that \(\boldsymbol{x}_{44}\) (bold text) of the renewed response matrices increases by \(\approx 0.0002\), but other elements remain the same as before. If we assume that the maximum degree of polarization in the solar observations is \(3\%\), the change of \(\boldsymbol{x}_{44}\) results in the scale error of \(0.0006\%\), which is negligible since the error is sufficiently small.

2.2 B.2 Contamination of the \(v\) Signal in \(\pm Q\) and \(\pm U\) Inputs

We raised the possibility that the linear polarization beam from the light source was not completely linearly polarized, and we estimated the contamination of the circular-polarization signal (\(\Delta v\)) for the input beam under such an assumption. If \(v\) is not zero (\(v\neq 0\)), the demodulated polarization signals of \(v'\) (see Equation 14) for \(\pm Q\) and \(\pm U\) inputs are given by:

$$ [v']_{\pm Q} = \frac{x_{41}+qx_{42}+ux_{43}+vx_{44}}{1+qx_{12}+ux_{13}+vx_{14}}\sim \frac{\pm x_{42}+\Delta v}{1\pm x_{12}} $$
(40)

with \((1,\mathrm{q},\mathrm{u},\mathrm{v})^{\top}=(1,\pm 1,0,v\neq 0)^{\top}\) and

$$ [v']_{\pm U} = \frac{x_{41}+qx_{42}+ux_{43}+vx_{44}}{1+qx_{12}+ux_{13}+vx_{14}}\sim \frac{\pm x_{43}+\Delta v}{1\pm x_{13}} $$
(41)

with \((1,\mathrm{q},\mathrm{u},\mathrm{v})^{\top}=(1,0,\pm 1,\mathrm{v}\neq 0)^{\top}\). Subsequently, the contaminated \(v\) signals are estimated by

$$ \Delta v = \frac{1}{2}([v']_{+Q} (1+ \boldsymbol{x}_{12})-[v']_{-Q}(1- \boldsymbol{x}_{12})) $$
(42)

and

$$ \Delta v = \frac{1}{2}([v']_{+U} (1+ \boldsymbol{x}_{13})-[v']_{-U}(1- \boldsymbol{x}_{13})). $$
(43)

The average \(v\)-contamination measured from Equations 42 and 43 is about 0.0035 on both channels. Therefore, it is confirmed that \(v\)-contamination may exist in the linear-polarization beam emitted from the light source. However, the influence of \(v\)-contamination can be neglected when determining each element of the response matrix. This is because the \(v\)-contamination is completely canceled out while solving the respective simultaneous equations shown in \([v']_{\pm Q}\) and \([v']_{\pm U}\) to estimate the elements of \(\boldsymbol{x}_{42}\) and \(\boldsymbol{x}_{43}\) (Equations 40 and 41).

2.3 B.3 Polarization Degree of the Light Source

The polarization degree of our light source used in the preflight calibration is determined by the extinction ratio (\(r_{e}\)) of the linear polarizer installed inside the light-source chamber. Before the integration of the light source, in 2018, we measured an extinction ratio of 400, leading to the polarization degree of the light source as \(p = \frac{r_{e}-1}{r_{e}+1}\) \(\approx 0.995\). However, the extinction ratio was measured to be \(r_{e} > 2000\) (corresponding to \(p \approx 0.999\)) by the vendor in 2013. There are two possibilities for this difference. The first is the aging of the linear polarizer, and the second is caused by our experimental environment. The measurement of \(r_{e}\) can be significantly influenced by the scattered light in a laboratory, which leads to underestimation of \(r_{e}\).

Next, we investigated the change of the response matrix depending on the polarization degree of the light source. Assuming that the polarization degree of the input beam is 0.995, the representative response matrices, as shown in Equations 26 and 27, are changed as follows:

$$ \boldsymbol{X}_{1}= \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} 1 & -0.00850 & -0.00553 & -0.00026 \\ 0 & +{\mathbf{0.99044}} & -0.03445 & +0.00682 \\ 0 & +0.03418 & +{\mathbf{0.99112}} & -0.00111 \\ 0 & +0.00743 & +0.00186 & +{\mathbf{0.99175}} \end{array}\displaystyle \right ) $$
(44)
$$ \boldsymbol{X}_{2}= \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} 1 & +0.00696 & -0.00705 & -0.00636 \\ 0 & +{\mathbf{0.99586}} & -0.00350 & +0.00693 \\ 0 & +0.00314 & +{\mathbf{0.99617}} & -0.00168 \\ 0 & -0.00143 & +0.00219 & +{\mathbf{0.99291}} \end{array}\displaystyle \right ). $$
(45)

From Equations 44 and 45, the values of the diagonal (bold text) of the renewed response matrices increases by \(\approx 0.005\) to close to unity, but other elements of the crosstalk remain the same as before. The change of the diagonal component results in the scale error of 0.015% if the degree of the polarization is \(3\%\), which is the maximum value expected for the solar observations (see Section 3.4). This error is sufficiently small that using the vendor supplied \(r_{e}\) is sufficient and any reduction of \(r_{e}\) from degradation or the experimental environment is neglected.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, D., Ishikawa, R., Kano, R. et al. Polarization Accuracy Verification of the Chromospheric LAyer SpectroPolarimeter. Sol Phys 297, 135 (2022). https://doi.org/10.1007/s11207-022-02064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02064-8

Keywords

Navigation