Skip to main content
Log in

Unusual magnetic relaxation behavior of hydrophilic colloids based on gadolinium(III) octabutoxyphthalocyaninate

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The work introduces the original and efficient approach toward hydrophilization of Gd(III) complex with hydrophobic octa-2,3,9,10,16,17,23,24-n-butoxyphthalocyanine (1H2). It consists in the solvent-mediated self-assembly of the preliminary synthesized octa-2,3,9,10,16,17,23,24-n-butoxyphthalocyaninatogadolinium(III) acetate 1GdOAc into the colloid species followed by their hydrophilization through the polyelectrolyte deposition. Small-angle X-ray scattering, TEM, and DLS measurements of the aqueous colloids reveal the disk-like colloid species formation with the greatest size value about 40 nm. Deposition of polystyrene sulfonate layer onto the surface of nanocolloids does not prevent their partial aggregation in aqueous solutions. The phthalocyaninate ligand is the reason for specific electrochemical behavior of the colloids, which is affected by the nanoparticulate form of the complex. The magnetic behavior of the complex reveals it as pure paramagnetic, while magnetic relaxation behavior of the colloids points to some specificity. The r2/r1 ratio measured at 0.47 T is higher (2.6) than the ratios commonly reported for Gd(III) complexes, coming to 36.8 at 11.75 T. Thus, the synthesized colloids are more efficient as T2- than T1-contrasting agents at magnetic field strengths above 1.4 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aydın Tekdaş D, Garifullin R, Şentürk B, Zorlu Y, Gundogdu U, Atalar E, Tekinay AB, Chernonosov AA, Yerli Y, Dumoulin F, Guler MO, Ahsen V, Gürek AG (2014) Design of a Gd-DOTA-phthalocyanine conjugate combining MRI contrast imaging and photosensitization properties as a potential molecular theranostic. Photochem Photobiol 90:1376–1386. https://doi.org/10.1111/php.12332

    Article  CAS  Google Scholar 

  • Boros E, Karimi S, Kenton N, Helm L, Caravan P (2014) Gd (DOTAlaP): exploring the boundaries of fast water exchange in gadolinium-based magnetic resonance imaging contrast agents. Inorg Chem 53:6985–6994. https://doi.org/10.1021/ic5008928

    Article  CAS  Google Scholar 

  • Botta M, Tei L (2012) Relaxivity enhancement in macromolecular and nanosized Gd III-based MRI contrast agents. Eur J Inorg Chem 2012:1945–1960. https://doi.org/10.1002/ejic.201101305

    Article  CAS  Google Scholar 

  • Britton J, Martynov AG, Oluwole DO, Gorbunova YG, Tsivadze AY, Nyokong T (2016) Improvement of nonlinear optical properties of phthalocyanine bearing diethyleneglycole chains: influence of symmetry lowering vs. heavy atom effect. J Porphyrins Phthalocyanines 20:1296–1305. https://doi.org/10.1142/S1088424616501042

    Article  CAS  Google Scholar 

  • Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC (2011) Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv Mater 23:2367–2371. https://doi.org/10.1002/adma.201004554

    Article  CAS  Google Scholar 

  • DIFFRAC (2005) Plus Evaluation package EVA, Version 11, User’s Manual, Bruker AXS, Karlsruhe, Germany, pр. 258. No Title

  • Elistratova J, Akhmadeev B, Gubaidullin A, Shestopalov MA, Solovieva A, Brylev K, Kholin K, Nizameev I, Ismaev I, Kadirov M, Mustafina A (2018) Structure optimization for enhanced luminescent and paramagnetic properties of hydrophilic nanomaterial based on heterometallic Gd-Re complexes. Mater Des 146:49–56. https://doi.org/10.1016/j.matdes.2018.03.006

    Article  CAS  Google Scholar 

  • Gao Z, Ma T, Zhao E, Docter D, Yang W, Stauber RH, Gao M (2016) Small is smarter: nano MRI contrast agents - advantages and recent achievements. Small 12:556–576. https://doi.org/10.1002/smll.201502309

    Article  CAS  Google Scholar 

  • Henoumont C, Laurent S, Vander Elst L (2009) How to perform accurate and reliable measurements of longitudinal and transverse relaxation times of MRI contrast media in aqueous solutions. Contrast Media Mol Imaging 4:312–321. https://doi.org/10.1002/cmmi.294

    Article  CAS  Google Scholar 

  • Hu F, Joshi HM, Dravid VP, Meade TJ (2010) High-performance nanostructured MR contrast probes. Nanoscale 2:1884–1891. https://doi.org/10.1039/c0nr00173b

    Article  CAS  Google Scholar 

  • Iwase A, Tanaka K (1990) Synthesis and electrochemistry of acetylacetonatolanthanide(III)- phthalocyaninates. Electrochim Acta 35(11–12):1707–1712. https://doi.org/10.1016/0013-4686(90)87069-E

    Article  CAS  Google Scholar 

  • Jiang J, Liu RCW, Mak TCW, Dominic Chan TW, Ng DKP (1997) Synthesis, spectroscopic and electrochemical properties of substituted bis(phthalocyaninato)lanthanide(III) complexes. Polyhedron 16(3):515–520. https://doi.org/10.1016/0277-5387(96)00248-3

    Article  CAS  Google Scholar 

  • Josefsen LB, Boyle RW (2012) Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2:916–966. https://doi.org/10.7150/thno.4571

    Article  CAS  Google Scholar 

  • Kataeva O, Khrizanforov M, Budnikova Y, Islamov D, Burganov T, Vandyukov A, Lyssenko K, Mahns B, Nohr M, Hampel S, Knupfer M (2016) Crystal growth, dynamic and charge transfer properties of new coronene charge transfer complexes. Cryst Growth Des 16:331–338. https://doi.org/10.1021/acs.cgd.5b01301

    Article  CAS  Google Scholar 

  • Khrizanforov MN, Arkhipova DM, Shekurov RP, Gerasimova TP, Ermolaev VV, Islamov DR, Miluykov VA, Kataeva ON, Khrizanforova VV, Sinyashin OG, Budnikova YH (2015) Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds. J Solid State Electrochem 19:2883–2890. https://doi.org/10.1007/s10008-015-2901-0

    Article  CAS  Google Scholar 

  • Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) A Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282. https://doi.org/10.1107/S0021889803012779

    Article  CAS  Google Scholar 

  • Kadish KM, Smith KM, Guilard R (ed) (2003) The Porphyrin Handbook. Volume 16 / Phthalocyanines: Spectroscopic and Electrochemical characterization. Elsevier Science (USA). ISBN 0-12-393220-3.

  • Lapkina LA, Larchenko VE, Tolkacheva EO et al (1998) Tetracrown-substituted lutetium (III) monophthalocyanines. Russ J Inorg Chem 43:901–909

    Google Scholar 

  • Lee A, Kim D, Choi S-H, Park JW, Jaung JY, Jung DH (2010) Theoretical study on phthalocyanine, pyrazinoporphyrazine and their complexation with Mg 2+ and Zn 2+. Mol Simul 36:192–198. https://doi.org/10.1080/08927020903177641

    Article  CAS  Google Scholar 

  • Martynov AG, Gorbunova YG (2007) Heteroleptic phthalocyaninato-[tetra(15-crown-5)phthalocyaninato] lanthanides (III) double-deckers: synthesis and cation-induced supramolecular dimerisation. Inorg Chim Acta 360:122–130. https://doi.org/10.1016/j.ica.2006.07.078

    Article  CAS  Google Scholar 

  • Meerovich IG, Gulyaev MV, Meerovich GA, Meerovich GA, Belov MS, Derkacheva VM, Dolotova OV, Loschenov VB, Baryshnikov AY, Pirogov YA (2015) Study of phthalocyanine derivatives as contrast agents for magnetic resonance imaging. Russ J Gen Chem 85:333–337. https://doi.org/10.1134/S1070363215010478

    Article  CAS  Google Scholar 

  • Mustafina A, Zairov R, Gruner M, Ibragimova A, Tatarinov D, Nizameyev I, Nastapova N, Yanilkin V, Kadirov M, Mironov V, Konovalov A (2011) Synthesis and photophysical properties of colloids fabricated by the layer-by-layer polyelectrolyte assembly onto Eu (III) complex as a core. Colloids Surf B: Biointerfaces 88:490–496. https://doi.org/10.1016/j.colsurfb.2011.07.039

    Article  CAS  Google Scholar 

  • Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148. https://doi.org/10.1002/adma.200802366

    Article  CAS  Google Scholar 

  • Nefedova IV, Gorbunova YG, Sakharov SG, Tsivadze AY (2005) Synthesis and spectroscopic study of terbium (III) and neodymium (III) complexes with tetra-15-crown-5-phthalocyanine. Russ J Inorg Chem 50

  • Oluwole DO, Yagodin AV, Mkhize NC, Sekhosana KE, Martynov AG, Gorbunova YG, Tsivadze AY, Nyokong T (2017) First example of nonlinear optical materials based on nanoconjugates of sandwich phthalocyanines with quantum dots. Chem Eur J 23:2820–2830. https://doi.org/10.1002/chem.201604401

    Article  CAS  Google Scholar 

  • Perrier M, Kenouche S, Long J, Thangavel K, Larionova J, Goze-Bac C, Lascialfari A, Mariani M, Baril N, Guérin C, Donnadieu B, Trifonov A, Guari Y (2013) Investigation on NMR relaxivity of nano-sized cyano-bridged coordination polymers. Inorg Chem 52:13402–13414. https://doi.org/10.1021/ic401710j

    Article  CAS  Google Scholar 

  • Pinto SMA, Tomé VA, Calvete MJF, Pereira MM, Burrows HD, Cardoso AMS, Pallier A, C.A. Castro MM, Tóth É, Geraldes CFGC (2016) The quest for biocompatible phthalocyanines for molecular imaging: photophysics, relaxometry and cytotoxicity studies. J Inorg Biochem 154:50–59. https://doi.org/10.1016/j.jinorgbio.2015.10.013

    Article  CAS  Google Scholar 

  • Rodriguez-Mendez ML, Aroca R, DeSaja JA (1992) Electrochromic properties of Langmuir-Blodgett films of bisphthalocyanine complexes of rare earth elements. Chem Mater 4:1017–1020. https://doi.org/10.1021/cm00023a018

    Article  CAS  Google Scholar 

  • Schühle DT, Caravan P (2013) Metal-Based MRI Contrast Agents

  • Selektor SL, Shokurov AV, Arslanov VV, Gorbunova YG, Birin KP, Raitman OA, Morote F, Cohen-Bouhacina T, Grauby-Heywang C, Tsivadze AY (2014) Orientation-induced redox isomerism in planar supramolecular systems. J Phys Chem C 118:4250–4258. https://doi.org/10.1021/jp411936k

    Article  CAS  Google Scholar 

  • Shahbazi-Gahrouei D (2006) Gadolinium-porphyrins: new potential magnetic resonance imaging contrast agents for melanoma detection. J Res Med Sci 11:217–223

    CAS  Google Scholar 

  • Shamsutdinova NA, Gubaidullin AT, Odintsov BM, Larsen RJ, Schepkin VD, Nizameev IR, Amirov RR, Zairov RR, Sudakova SN, Podyachev SN, Mustafina AR, Stepanov AS (2016) Polyelectrolyte-stabilized nanotemplates based on Gd(III) complexes with macrocyclic Tetra-1,3-diketones as a positive MR contrast agents. ChemistrySelect 1:1377–1383. https://doi.org/10.1002/slct.201600223

    Article  CAS  Google Scholar 

  • Shokrollahi H (2013) Contrast agents for MRI. Mater Sci Eng C 33:4485–4497. https://doi.org/10.1016/j.msec.2013.07.012

    Article  CAS  Google Scholar 

  • Small Angle X-ray Scattering. Version 4.0. Software Reference Manual, M86-E00005-0600. Bruker AXS Inc. (2000)

  • Sour A, Jenni S, Ortí-Suárez A, Schmitt J, Heitz V, Bolze F, Loureiro de Sousa P, Po C, Bonnet CS, Pallier A, Tóth É, Ventura B (2016) Four gadolinium (III) complexes appended to a porphyrin: a water-soluble molecular theranostic agent with remarkable relaxivity suited for MRI tracking of the photosensitizer. Inorg Chem 55:4545–4554. https://doi.org/10.1021/acs.inorgchem.6b00381

    Article  CAS  Google Scholar 

  • Stepanov A, Nizameev I, Amirov R, Kleshnina S, Khakimullina G, Solovieva S, Voloshina A, Strobykina A, Gubaidullin A, Nugmanov R, Mustafina A (2017) Alkyl-malonate-substituted thiacalix[4] arenes as ligands for bottom-up design of paramagnetic Gd(III)-containing colloids with low cytotoxicity. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.017

  • TOPAS V3: General profile and structure analysis software for powder diffraction data. Technical Reference. Bruker AXS. Karlsruhe. Germany (2005), pр 117

  • UMD, UTK, NIST, ORNL, ISIS, ESS and ILL 2009

  • Wang H, Wang BW, Bian Y, Gao S, Jiang J (2016) Single-molecule magnetism of tetrapyrrole lanthanide compounds with sandwich multiple-decker structures. Coord Chem Rev 306:195–216. https://doi.org/10.1016/j.ccr.2015.07.004

    Article  CAS  Google Scholar 

  • Zairov R, Zhilkin M, Mustafina A, Nizameev I, Tatarinov D, Konovalov A (2015) Impact of polyelectrolyte coating in fluorescent response of Eu (III)-containing nanoparticles on small chelating anions including nucleotides. Surf Coatings Technol 271:242–246. https://doi.org/10.1016/j.surfcoat.2014.11.076

    Article  CAS  Google Scholar 

  • Zairov R, Khakimullina G, Podyachev S, Nizameev I, Safiullin G, Amirov R, Vomiero A, Mustafina A (2017) Hydration number: crucial role in nuclear magnetic relaxivity of Gd(III) chelate-based nanoparticles. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-14409-6

    Article  CAS  Google Scholar 

  • Zang L, Zhao H, Hua J, Qin F, Zheng Y, Zhang Z, Cao W (2017) Water-soluble gadolinium porphyrin as a multifunctional theranostic agent: phosphorescence-based oxygen sensing and photosensitivity. Dyes Pigments 142:465–471. https://doi.org/10.1016/j.dyepig.2017.03.056

    Article  CAS  Google Scholar 

  • Zhang Y, Lovell JF (2017) Recent applications of phthalocyanines and naphthalocyanines for imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:e1420. https://doi.org/10.1002/wnan.1420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustem R. Zairov.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zairov, R.R., Yagodin, A.V., Khrizanforov, M. et al. Unusual magnetic relaxation behavior of hydrophilic colloids based on gadolinium(III) octabutoxyphthalocyaninate. J Nanopart Res 21, 12 (2019). https://doi.org/10.1007/s11051-018-4455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4455-4

Keywords

Navigation