Skip to main content
Log in

Continuum limit of the lattice quantum graph Hamiltonian

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the quantum graph Hamiltonian on the square lattice in Euclidean space, and we show that the spectrum of the Hamiltonian converges to the corresponding Schrödinger operator on the Euclidean space in the continuum limit, and that the corresponding eigenfunctions and eigenprojections also converge in some sense. We employ the discrete Schrödinger operator as the intermediate operator, and we use a recent result by the second and third authors on the continuum limit of the discrete Schrödinger operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

There are no data associated with the this manuscript.

References

  1. Allaire, G., Piatnitski, A.: Homogenization of the Schrödinger equation and effective mass theorems. Commun. Math. Phys. 258(1), 1–22 (2005)

    Article  ADS  Google Scholar 

  2. Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Process in Periodic Media Mathematical Problems in Mechanics of Composite Materials. Mathematics and its Applications (Soviet Series), vol. 36. Kluwer, Dordrecht (1989)

    MATH  Google Scholar 

  3. Birman, Sh., Suslina, T.A.: Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class \(H^1({\mathbb{R}}^d)\). Algebra i Analiz 18(6), 1–130 (2006)

    Google Scholar 

  4. Lovász, L.: Large Networks and Graph Limits, Colloquium Publication, vol. 60. American Mathematical Society, Providence, R.I. (2012)

    MATH  Google Scholar 

  5. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs, Matematical Surveys and Monographs, vol. 186. American Mathematical Society, Providence, R.I. (2013)

    MATH  Google Scholar 

  6. Exner, P., Hejc̆ík, P., S̆eba, P.: Approximation by graphs and emergence of global structures. Rep. Math. Phys. 57(3), 445–455 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Nakamura, S., Tadano, Y.: On a continuum limit of discrete Schrödinger operators on square lattice. J. Spectr. Theory 11(1), 355–367 (2021)

    Article  MathSciNet  Google Scholar 

  8. Cattaneo, C.: The spectrum of the continuous Laplacian on a graph. Monatsh. Math. 124(3), 215–235 (1997)

    Article  MathSciNet  Google Scholar 

  9. Exner, P.: A duality between Schrödinger operators on graphs and certain Jacobi matrices. Ann. Inst. H. Poincaré, Phys. Théor. 66(4), 359–371 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Pankrashkin, K.: Unitary dimension reduction for a class of self-adjoint extensions with applications to graph-like structures. J. Math. Anal. Appl. 396(2), 640–655 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kuchment, P., Post, O.: On the spectra of carbon nano-structures. Commun. Math. Phys. 275(3), 805–826 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Post, O.: Spectral Analysis on Graph-Like Spaces. Lecture Notes in Mathematics, vol. 2039. Springer, Berlin (2011)

  13. Exner, P., Post, O.: A general approximation of quantum graph vertex couplings by scaled Schrödinger operators on thin branched manifolds. Commun. Math. Phys. 322(1), 207–227 (2013)

    Article  ADS  Google Scholar 

  14. Post, O., Simmer, J.: Graph-like spaces approximated by discrete graphs and applications. Math. Nachr. 294(11), 2237–2278 (2021)

    Article  MathSciNet  Google Scholar 

  15. Demuth, M., Krishna, M.: Determining Spectra in Quantum Theory. Birkhäuser, Boston (2005)

    Book  Google Scholar 

  16. Simon, B.: Functional Integration in Quantum Physics, 2nd edn. AMS Chelsea, Providence, R.I. (2005)

    MATH  Google Scholar 

  17. Cornean, H., Garde, H., Jensen, A.: Norm resolvent convergence of discretized Fourier multipliers. J. Fourier Anal. Appl. 27(4), 71 (2021)

    Article  MathSciNet  Google Scholar 

  18. Isozaki, H., Jensen, A.: Continuum limit for lattice Schrödinger operators. Rev. Math. Phys. 34, 2250001 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

P.E. was supported by the Czech Science Foundation within the project 21-07129S and by the EU project \(\mathrm{CZ}.02.1.01/0.0/0.0/16_019/0000778\). S.N. was partially supported by JSPS Grant Numbers 15H03622 (2015–2019) and 21K03276 (2021–2024). Y.T. was partially supported by JSPS Grant Numbers 20J00247 (2020–2021) and 21K20337 (2021–2023). This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. The authors appreciate useful comments made by the referees. In particular, Appendix A is added following one of their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Exner.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Corollary 2.4

Appendix A. Proof of Corollary 2.4

Proof of Corollary 2.4

Since we already have

$$\begin{aligned} d_\mathrm {H}(\sigma ((H+M)^{-1}), \sigma ((H_2+M)^{-1}))\rightarrow 0, \quad \text {as }\ell \rightarrow 0, \end{aligned}$$

(see [7]), it suffices to show

$$\begin{aligned} d_\mathrm {H}(\sigma ((H_2+M)^{-1}), \sigma ((\nu H_1+M)^{-1}))\rightarrow 0, \quad \text {as }\ell \rightarrow 0. \end{aligned}$$
(A.1)

We note that Corollary 4.3 implies

$$\begin{aligned} \bigl | \Vert I^*\varphi \Vert _{{\mathcal {H}}_2}-\Vert \varphi \Vert _{{\mathcal {H}}_1} \bigr | \le C {\ell } \Vert \varphi \Vert _{H^1(\Gamma )}. \end{aligned}$$
(A.2)

In fact, by Corollary 4.3, we immediately have

$$\begin{aligned} \bigl | \Vert I^*\varphi \Vert ^2_{{\mathcal {H}}_2}-\Vert \varphi \Vert ^2_{{\mathcal {H}}_1} \bigr |&=|\langle \varphi ,(I I^*-1)\varphi \rangle _{{\mathcal {H}}_1}|\\&\le \Vert I^*I-1 \Vert _{{\mathcal {B}}(H^1(\Gamma ),{\mathcal {H}}_1)} \Vert \varphi \Vert _{H^1(\Gamma )} \Vert \varphi \Vert _{{\mathcal {H}}_1}\\&\le C\ell \Vert \varphi \Vert _{H^1(\Gamma )}\Vert \varphi \Vert _{{\mathcal {H}}_1}. \end{aligned}$$

Hence, we have

$$\begin{aligned} \bigl | \Vert I^*\varphi \Vert _{{\mathcal {H}}_2}-\Vert \varphi \Vert _{{\mathcal {H}}_1} \bigr |&= \frac{\bigl | \Vert I^*\varphi \Vert ^2_{{\mathcal {H}}_2}-\Vert \varphi \Vert ^2_{{\mathcal {H}}_1} \bigr | }{{\Vert I^*\varphi \Vert _{{\mathcal {H}}_2}+\Vert \varphi \Vert _{{\mathcal {H}}_1}} } \le \frac{\bigl | \Vert I^*\varphi \Vert ^2_{{\mathcal {H}}_2}-\Vert \varphi \Vert ^2_{{\mathcal {H}}_1} \bigr | }{\Vert \varphi \Vert _{{\mathcal {H}}_1}}\\&\le C\ell \Vert \varphi \Vert _{H^1(\Gamma )}. \end{aligned}$$

Let \(z\in {\mathbb {C}}\setminus {\mathbb {R}}\). We note that \((\nu H_1-z)^{-1}\) is bounded from \({\mathcal {H}}_1\) to \(H^1(\Gamma )\), uniformly in \(\ell \). By (A.2), we have

$$\begin{aligned} \bigl | \Vert I^*(\nu H_1-z)^{-1} I\varphi \Vert _{{\mathcal {H}}_2} - \Vert (\nu H_1-z)^{-1}I\varphi \Vert _{{\mathcal {H}}_1} \bigr |\\ \qquad \le C{\ell }\Vert (\nu H_1-z)^{-1}I\varphi \Vert _{H^1(\Gamma )} \le C'{\ell } \Vert \varphi \Vert _{{\mathcal {H}}_2}. \end{aligned}$$

This implies

$$\begin{aligned} \bigl | \Vert I^*(\nu H_1-z)^{-1} I \Vert _{{\mathcal {B}}({\mathcal {H}}_2)} - \Vert (\nu H_1-z)^{-1}I \Vert _{{\mathcal {B}}({\mathcal {H}}_2,{\mathcal {H}}_1)} \bigr | \le C{\ell }. \end{aligned}$$

Then, we consider

$$\begin{aligned} \bigl | \Vert (\nu H_1-z)^{-1} I \Vert _{{\mathcal {B}}({\mathcal {H}}_2,{\mathcal {H}}_1)} - \Vert (\nu H_1-z)^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_1)} \bigr |\\ =\bigl | \Vert I^*(\nu H_1-{\bar{z}})^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_1,{\mathcal {H}}_2)} - \Vert (\nu H_1-{\bar{z}})^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_1)} \bigr |, \end{aligned}$$

but the right-hand side is bounded by \(C{\ell }\) as well as the above argument, simply by replacing z by \({\bar{z}}\), and \(I\varphi \) by \(\varphi \). Thus, we have

$$\begin{aligned} \bigl | \Vert I^*(\nu H_1-z)^{-1} I \Vert _{{\mathcal {B}}({\mathcal {H}}_2)} - \Vert (\nu H_1-z)^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_1)} \bigr | \le C{\ell } \end{aligned}$$

Combining this with Theorem 4.6, we have

$$\begin{aligned} \bigl | \Vert (H_2-z)^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_2)} - \Vert (\nu H_1-z)^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_1)} \bigr | \le C{\ell } \end{aligned}$$
(A.3)

where \(0<\ell \le 1\).

Let \(R>0\), fixed. We consider the resolvents at \(z=\mu +i\), \(\mu \in [-R,R]\). Here we show the estimate (A.3) holds uniformly in such z. By the resolvent equation, we know

$$\begin{aligned} \Vert (A-(\mu +i))^{-1} - (A-(\mu '+i))^{-1} \Vert \le |\mu -\mu '|, \quad \mu ,\mu '\in {\mathbb {R}}, \end{aligned}$$

in general, where A is a self-adjoint operator. Let \(\varepsilon >0\), and let \(\{\mu _j\}_{j=1}^N =\{n\varepsilon /3\in [-R,R]\mid n\in {\mathbb {Z}}\}\). We choose \(\ell _0>0\) so small that

$$\begin{aligned} \bigl | \Vert (H_2-(\mu _j+i))^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_2)} - \Vert (\nu H_1-(\mu _j+i))^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_1)} \bigr | < \varepsilon /3 \end{aligned}$$

for \(0<\ell \le \ell _0\) and \(j=1,\dots , N\). Then, by the \(\varepsilon /3\)-argument, we learn

$$\begin{aligned} \bigl | \Vert (H_2-(\mu +i))^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_2)} - \Vert (\nu H_1-(\mu +i))^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_1)} \bigr | < \varepsilon \end{aligned}$$

for all \(\mu \in [-R,R]\), \(0<\ell \le \ell _0\), and this proves the uniform bound.

We now prove the local convergence of the spectrum with respect to the Hausdorff distance. We fix \(R>0\), and consider \(\sigma (\nu H_1)\) and \(\sigma (H_2)\) in \([-R,R]\). Let \(\varepsilon >0\) and we set

$$\begin{aligned} \rho _\varepsilon = [-R,R]\cap \{\mu \in {\mathbb {R}}\mid \mathrm {dist}(\mu ,\sigma (\nu H_1))\ge \varepsilon \}. \end{aligned}$$

We note, for each \(\mu \in \rho _\varepsilon \),

$$\begin{aligned} \Vert (\nu H_1-(\mu +i))^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_1)}\le 1/\sqrt{1+\varepsilon ^2}. \end{aligned}$$

We choose \(\ell _0>0\) so small that

$$\begin{aligned} \bigl | \Vert (H_2-(\mu +i))^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_2)} - \Vert (\nu H_1-(\mu +i))^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_1)} \bigr | \le \frac{1}{\sqrt{1+\varepsilon ^2/4}} -\frac{1}{\sqrt{1+\varepsilon ^2}} \end{aligned}$$

for \(\mu \in [-R,R]\) and \(0<\ell \le \ell _0\). Then, this implies

$$\begin{aligned} \Vert (H_2-(\mu +i))^{-1} \Vert _{{\mathcal {B}}({\mathcal {H}}_2)} \le \frac{1}{\sqrt{1+\varepsilon ^2/4}} \end{aligned}$$

if \(\mu \in \rho _\varepsilon \) and \(0<\ell \le \ell _0\), and hence, \((\mu -\varepsilon /2,\mu +\varepsilon /2)\subset \rho (H_2)\). In particular, \(\mu \in \rho (H_2)\) if \(\mu \in \rho _\varepsilon \), i.e., \(\rho _\varepsilon \subset \rho (H_2)\), provided \(0<\ell \le \ell _0\). This, in turn, implies \(\sigma (H_2)\cap [-R,R]\) is included in the \(\varepsilon \)-neighborhood of \(\sigma (\nu H_1)\).

Replacing \(\nu H_1\) and \(H_2\), we also learn \(\sigma (\nu H_1)\cap [-R,R]\) is included in the \(\varepsilon \)-neighborhood of \(\sigma (H_2)\) if \(\ell \) is sufficiently small. In other words, we now have

$$\begin{aligned} \sup _{\mu \in \sigma (\nu H_1)\cap [-R,R]} d(\mu ,\sigma (H_2))<\varepsilon , \quad \sup _{\mu \in \sigma (H_2)\cap [-R,R]} d(\mu ,\sigma (\nu H_1))<\varepsilon , \end{aligned}$$

if \(\ell >0\) is sufficiently small. This local convergence implies (A.1) by the spectrum mapping theorem. This completes the proof.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Exner, P., Nakamura, S. & Tadano, Y. Continuum limit of the lattice quantum graph Hamiltonian. Lett Math Phys 112, 83 (2022). https://doi.org/10.1007/s11005-022-01576-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01576-5

Keywords

Mathematics Subject Classification

Navigation