Skip to main content
Log in

Processing of Korolevo samples aimed at AMS determination of in situ 10Be and 26Al nuclides and their purity control using follow-up mass spectrometry scans

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The sample preparation and evaluation of the effects of impurities on the determination of 10Be and 26Al by accelerator mass spectrometry (AMS) was performed as an initial part of research project determining the timing of early hominin occupation at Korolevo, western Ukraine. The rock samples analysed exhibited various levels of weathering, lithology, and mass. The follow-up mass spectrometry scans revealed Ti impurity in BeO targets which stimulated quantification of Ti in quartz concentrate. The 26Al to 10Be ratios were independent on Ti and Al impurity for samples from the same depositional level. AMS Be current reduction was a function of BeO dilution by TiO2 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Merchel S, Bremser W, Akhmadaliev S, Arnold M, Aumaître G, Bourlès DL, Braucher R, Caffee M, Christl M, Fifield LK, Finkel RC, Freeman SPHT, Ruiz-Gómez A, Kubik PW, Martschini M, Rood DH, Tims SG, Wallner A, Wilcken KM, Xu S (2012) Quality assurance in accelerator mass spectrometry: results from an international round-robin exercise for 10Be. Nucl Instr Methods B 289:68–73. https://doi.org/10.1016/j.nimb.2012.07.038

    Article  CAS  Google Scholar 

  2. Corbett LB, Bierman PR, Rood DH (2016) An approach for optimizing in situ cosmogenic 10Be sample preparation. Quat Geochronol 32:24–34. https://doi.org/10.1016/j.quageo.2016.02.001

    Article  Google Scholar 

  3. Merchel S, Gärtner A, Beutner S, Bookhagen B, Chabilan A (2019) Attempts to understand potential deficiencies in chemical procedures for AMS: cleaning and dissolving quartz for 10Be and 26Al analysis. Nucl Instr Meth B 455:293–299. https://doi.org/10.1016/j.nimb.2019.02.007

    Article  CAS  Google Scholar 

  4. Corbett LB, Bierman PR, Brown TA, Caffee MW, Fink D, Freeman SPHT, Hidy AJ, Rood DH, Wilcken KM, Woodruff TE (2022) Clean quartz matters for cosmogenic nuclide analyses: an exploration of the importance of sample purity using CRONUS-N reference material. Quat Geochronol 73:101403. https://doi.org/10.1016/j.quageo.2022.101403

    Article  Google Scholar 

  5. Ruszkiczay Z, Neuhuber S, Braucher R, Lachner J, Steier P, Wieser A, Braun M, ASTER Team (2022) Comparison and performance of two cosmogenic nuclide sample preparation procedures of in situ produced 10Be and 26Al. J Radioanal Nucl Chem 329:1523–1536

  6. Sulaymonova VA, Fuchs MC, Gloaguen R, Möckel R, Merchel S, Rudolph M, Krbetschek MR (2018) Feldspar flotation as a quartz-purification method in cosmogenic nuclide dating: a case study of fluvial sediments from the Pamir. MethodsX 5:717–726. https://doi.org/10.1016/j.mex.2018.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kohl CP, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ produced cosmogenic nuclides. Geochim Cosmochim Acta 56:3583–3587. https://doi.org/10.1016/0016-7037(92)90401-4

    Article  CAS  Google Scholar 

  8. Mifsud C, Fujioka T, Fink D (2013) Extraction and purification of quartz in rock using hot phosphoric acid for in situ cosmogenic exposure dating. Nucl Instr Methods B 294:203–207. https://doi.org/10.1016/j.nimb.2012.08.037

    Article  CAS  Google Scholar 

  9. Child D, Elliot G, Mifsud C, Smith AM, Fink D (2000) Sample processing for earth science studies at ANTARES. Nucl Instr Methods B 172:856–860. https://doi.org/10.1016/S0168-583X(00)00198-1

    Article  CAS  Google Scholar 

  10. Von Blanckenburg F, Hewawasam T, Kubik PW (2004) Cosmogenic nuclide evidence for low weathering and denudation in the wet tropical highlands of Sri Lanka. J Geophys Res 109:F03008. https://doi.org/10.1029/2003JF000049

    Article  Google Scholar 

  11. Merchel S, Arnold M, Aumaître G, Benedetti L, Bourlès DL, Braucher R, Alfimov V, Freeman SPHT, Steier P, Wallner A (2008) Towards more precise 10Be and 36Cl data from measurements at the 10–14 level: Influence of sample preparation. Nucl Instr Methods B 266:4921–4926. https://doi.org/10.1016/j.nimb.2008.07.031

    Article  CAS  Google Scholar 

  12. Li Z, Zhenkun W, Hong C, Ming L, Guocheng D, Yunchong F, Guoqing Z, Weijian Z (2016) A case study using 10Be-26Al exposure dating at the Xi´an AMS center. Radiocarbon 58:193–203. https://doi.org/10.1017/RDC.2015.20

    Article  CAS  Google Scholar 

  13. Binnie SA, Dunai TJ, Voronina E, Goral T, Heinze S, Dewald A (2015) Separation of Be and Al for AMS using single-step column chromatography. Nucl Instr Methods B 361:397–401. https://doi.org/10.1016/j.nimb.2015.03.069

    Article  CAS  Google Scholar 

  14. Haesaerts P, Koulakovska L (2006) La sequence pedosedimentaire de Korolevo (Ukraine transcarpatique): contexte chronostratigraphique et chronologique. In: Koulakovaska L (ed) The European middle Palaeolithic, institute of archaeology. National Academy of Sciences, Kyiv, pp 21–37

    Google Scholar 

  15. Koulakovska LV, Usik V, Haesaerts P (2010) Early Paleolithic of Korolevo site (Transcarpathia, Ukraine). Quat Int 223–224:116–130. https://doi.org/10.1016/j.quaint.2009.09.031

    Article  Google Scholar 

  16. Rocca R (2016) First settlements in Central Europe: between originality and banality. Quat Int 409:213–221. https://doi.org/10.1016/j.quaint.2015.08.066

    Article  Google Scholar 

  17. Kučera J, Soukal L (1988) Homogeneity tests and certification analyses of coal fly ash reference materials by instrumental neutron activation analysis. J Radioanal Nucl Chem 121:245–259. https://doi.org/10.1007/bf02041411

    Article  Google Scholar 

  18. Řanda Z, Kučera J, Soukal L (2003) Elemental characterization of the new Czech meteorite Morávka by neutron and photon activation analysis. J Radioanal Nucl Chem 257:275–283. https://doi.org/10.1023/a:1024767309558

    Article  Google Scholar 

  19. National Institute of Standards and Technology (NIST), Certificate of Analysis, Standard Reference Material 2711a, Montana II Soil. Gaithersburg, MD 20899, 22 May 2009

  20. Merchel S, Herpers U (1999) An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochim Acta 84:215–219. https://doi.org/10.1524/ract.1999.84.4.215

    Article  CAS  Google Scholar 

  21. Merchel S, Bremser W, Bourlès DL, Czeslik U, Erzinger J, Kummer N-A, Leanni L, Merkel B, Recknagel S, Schaefer U (2013) Accuracy of 9Be-data and its influence on 10Be cosmogenic nuclide data. J Radioanal Nucl Chem 298:1871–1878. https://doi.org/10.1007/s10967-013-2746-x

    Article  CAS  Google Scholar 

  22. Merchel S, Braucher R, Lachner J, Rugel G (2021) Which is the best 9Be carrier for 10Be/9Be accelerator mass spectrometry? MethodsX 8:101486. https://doi.org/10.1016/j.mex.2021.101486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rugel G, Pavetich S, Akhmadaliev S, Enamorado Baez SM, Scharf A, Ziegenrücker R, Merchel S (2016) The first four years of the AMS-facility DREAMS: status and developments for more accurate radionuclide data. Nucl Instr Methods B 370:94–100. https://doi.org/10.1016/j.nimb.2016.01.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education, Youth and Sports of the Czech Republic (MEYS) within project No. CZ.02.1.01/0.0/0.0/16_019/0000728. Parts of this research were carried out at the Ion Beam Centre (IBC) at the Helmholtz-Zentrum Dresden-Rossendorf e. V., a member of the Helmholtz Association. Samples preparation and AMS measurements were supported by the RADIATE project under the Grant Agreement 824096 from the EU Research and Innovation programme HORIZON 2020 (Transnational Access poject 21002366 and Guest researcher programme). We thank the DREAMS operator team for their assistance with AMS measurements. Irradiation of samples by neutrons for INAA was supported by MEYS project No. LM2018120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kameník.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameník, J., Garba, R., Stübner, K. et al. Processing of Korolevo samples aimed at AMS determination of in situ 10Be and 26Al nuclides and their purity control using follow-up mass spectrometry scans. J Radioanal Nucl Chem 332, 1583–1590 (2023). https://doi.org/10.1007/s10967-022-08738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08738-8

Keywords

Navigation