Skip to main content
Log in

Velocity effect in swift heavy ion irradiation: how the low- and high-energy track formation thresholds meet

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Variations of the threshold of swift heavy ion track formation with the ion energy and mass are studied here. We apply the hybrid multiscale approach combining TREKIS-3 code describing the electronic kinetics with the classical molecular dynamics tracing the evolution of the excited lattice. The results demonstrate that with a lowering of the energy loss curve (by choosing lighter ions for irradiation), the high-velocity threshold starts to shift down, whereas the low-velocity one remains constant until the thresholds meet. For certain ion parameters, a situation is possible in which both thresholds (low- and high-velocity) lie at the low-energy shoulder of the Bragg curve which results from the mismatch between the ion energy positions of the maximal track radius and the Bragg peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Komarov FF (2017) Nano-and microstructuring of solids by swift heavy ions. Phys Uspekhi 60:435–471. https://doi.org/10.3367/UFNe.2016.10.038012

    Article  CAS  Google Scholar 

  2. Lang M, Djurabekova F, Medvedev N et al (2020) Fundamental phenomena and applications of swift heavy ion irradiations. Comprehensive nuclear materials. Elsevier, pp 485–516

    Chapter  Google Scholar 

  3. Medvedev N, Volkov AE, Rymzhanov R et al (2023) Frontiers, challenges, and solutions in modeling of swift heavy ion effects in materials. J Appl Phys 133:100701. https://doi.org/10.1063/5.0128774

    Article  CAS  Google Scholar 

  4. Rogozhkin SV, Bogachev AA, Nikitin AA et al (2021) TEM analysis of radiation effects in ODS steels induced by swift heavy ions. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 486:1–10. https://doi.org/10.1016/J.NIMB.2020.10.017

    Article  CAS  Google Scholar 

  5. Yemini M, Hadad B, Liebes Y et al (2009) The controlled fabrication of nanopores by focused electron-beam-induced etching. Nanotechnology 20:245302. https://doi.org/10.1088/0957-4484/20/24/245302

    Article  CAS  Google Scholar 

  6. Notthoff C, Jordan S, Hadley A et al (2020) Swift heavy ion irradiation of GaSb: from ion tracks to nano-porous networks. Phys Rev Mater 4:046001. https://doi.org/10.1103/PhysRevMaterials.4.046001

    Article  CAS  Google Scholar 

  7. Peinetti AS, Lake RJ, Cong W et al (2021) Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Sci Adv 7:eabh2848. https://doi.org/10.1126/SCIADV.ABH2848

    Article  CAS  Google Scholar 

  8. Choudhury N, Singh F, Sarma BK (2013) Effect of swift heavy ion irradiation on lead sulfide quantum dots embedded in polyvinyl alcohol. Radiat Eff Defects Solids 168:498–503. https://doi.org/10.1080/10420150.2012.761995

    Article  CAS  Google Scholar 

  9. Gismatulin A, Skuratov V, Volodin V, et al (2019) Swift heavy ion stimulated formation of the Si quantum dots in Si/SiO2 multilayer heterostructures. In: Lukichev VF, Rudenko K V (eds) international conference on micro- and nano-electronics 2018. SPIE, p 71

  10. Schwen D, Bringa E, Krauser J et al (2012) Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: experiments and atomistic simulations. Appl Phys Lett 101:113115. https://doi.org/10.1063/1.4752455

    Article  CAS  Google Scholar 

  11. Touboul AD, Privat A, Arinero R et al (2012) Swift heavy ion-induced silicon dioxide nanostructuration: experimental observation of velocity effect. Eur Phys J Appl Phys 60:10402. https://doi.org/10.1051/epjap/2012120349

    Article  CAS  Google Scholar 

  12. Lang M, Voss K, Neumann R (2005) Influence of ion velocity on the track morphology in dark mica. GSI Sci Rep 3:343. https://doi.org/10.13140/RG.2.2.15219.58401

    Article  Google Scholar 

  13. Skuratov VA, O’Connell J, Kirilkin NS, Neethling J (2014) On the threshold of damage formation in aluminum oxide via electronic excitations. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 326:223–227. https://doi.org/10.1016/j.nimb.2013.10.037

    Article  CAS  Google Scholar 

  14. Xu L, Rymzhanov RA, Zhai P et al (2023) Direct fabrication of sub-10 nm nanopores in WO3 nanosheets using single swift heavy ions. Nano Lett 23:4502–4509. https://doi.org/10.1021/ACS.NANOLETT.3C00884

    Article  CAS  Google Scholar 

  15. Karlusic M, Ghica C, Negrea RF et al (2017) On the threshold for ion track formation in CaF2. New J Phys 19:23023. https://doi.org/10.1088/1367-2630/aa5914

    Article  CAS  Google Scholar 

  16. Szenes G, Pécz B (2016) Anomalous effect of ion velocity on track formation in GeS. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 389–390:17–22. https://doi.org/10.1016/J.NIMB.2016.11.008

    Article  Google Scholar 

  17. Meftah A, Brisard F, Costantini JM et al (1993) Swift heavy ions in magnetic insulators: a damage-cross-section velocity effect. Phys Rev B 48:920–925. https://doi.org/10.1103/PhysRevB.48.920

    Article  CAS  Google Scholar 

  18. Rymzhanov RA, Gorbunov SA, Medvedev N, Volkov AE (2019) Damage along swift heavy ion trajectory. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 440:25–35. https://doi.org/10.1016/j.nimb.2018.11.034

    Article  CAS  Google Scholar 

  19. Rymzhanov R, Medvedev NA, Volkov AE (2017) Damage threshold and structure of swift heavy ion tracks in Al2O3. J Phys D Appl Phys 50:475301. https://doi.org/10.1088/1361-6463/aa8ff5

    Article  CAS  Google Scholar 

  20. Medvedev N, Volkov AE (2022) Nonthermal acceleration of atoms as a mechanism of fast lattice heating in ion tracks. J Appl Phys 131:225903. https://doi.org/10.1063/5.0095724

    Article  CAS  Google Scholar 

  21. (2023) TREKIS-3. https://github.com/N-Medvedev/TREKIS-3

  22. Medvedev NA, Rymzhanov RA, Volkov AE (2015) Time-resolved electron kinetics in swift heavy ion irradiated solids. J Phys D Appl Phys 48:355303. https://doi.org/10.1088/0022-3727/48/35/355303

    Article  CAS  Google Scholar 

  23. Rymzhanov RA, Medvedev NA, Volkov AE (2016) Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 388:41–52. https://doi.org/10.1016/j.nimb.2016.11.002

    Article  CAS  Google Scholar 

  24. Ritchie RH, Howie A (1977) Electron excitation and the optical potential in electron microscopy. Philos Mag 36:463–481. https://doi.org/10.1080/14786437708244948

    Article  CAS  Google Scholar 

  25. Cullen DE (2018) EPICS2017: electron photon interaction cross sections: w-nds.iaea.org/epics/. Vienna

  26. Kuhr J-C, Fitting H-J (1999) Monte Carlo simulation of electron emission from solids. J Electron Spectros Relat Phenomena 105:257–273. https://doi.org/10.1016/S0368-2048(99)00082-1

    Article  CAS  Google Scholar 

  27. Medvedev N, Akhmetov F, Rymzhanov RA et al (2022) Modeling time-resolved kinetics in solids induced by extreme electronic excitation. Adv Theory Simul 5:2200091. https://doi.org/10.1002/ADTS.202200091

    Article  CAS  Google Scholar 

  28. Thompson AP, Aktulga HM, Berger R et al (2022) LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171. https://doi.org/10.1016/J.CPC.2021.108171

    Article  CAS  Google Scholar 

  29. Matsui M (1996) Molecular dynamics simulation of structures, bulk moduli, and volume thermal expansivities of silicate liquids in the system CaO–MgO–Al2O3–SiO2. Geophys Res Lett 23:395–398. https://doi.org/10.1029/96GL00260

    Article  CAS  Google Scholar 

  30. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18:15012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  31. Rymzhanov RA, Medvedev N, O’Connell JH et al (2020) Insights into different stages of formation of swift heavy ion tracks. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 473:27–42. https://doi.org/10.1016/j.nimb.2020.04.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out in part using computing resources of the Federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”, http://ckp.nrcki.ru/. The work of RR and AEV was funded by the Ministry of Education and Science of the Republic of Kazakhstan (grant number AP09259476). NM gratefully acknowledges financial support from the Czech Ministry of Education, Youth and Sports (grants No. LTT17015, LM2018114, and No. EF16_013/0001552).

Author information

Authors and Affiliations

Authors

Contributions

RAR: Conceptualization (equal), Methodology (equal), Software (equal), Formal analysis (lead), Visualization (lead), Writing-Original Draft (equal). NM: Conceptualization (equal), Methodology (equal), Software (equal), Writing-Original Draft (equal), Writing—Review & Editing (equal). AEV: Conceptualization (equal), Methodology (equal), Writing—Review & Editing (equal).

Corresponding author

Correspondence to R. A. Rymzhanov.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 107 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rymzhanov, R.A., Medvedev, N. & Volkov, A.E. Velocity effect in swift heavy ion irradiation: how the low- and high-energy track formation thresholds meet. J Mater Sci 58, 14072–14079 (2023). https://doi.org/10.1007/s10853-023-08898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08898-2

Navigation